

Manufacturing of W2Power and turbine housing demonstrators

Edouard WALDURA, **EXAIL** João CARDOSO, INEGI

> **E-LASS Seminar** 03/05/2023

W2Power demonstrators

Edouard WALDURA, **EXAIL**

Production of 2 masts Scale 1/6

Tower design :

- 2 half tower
- Bottom metal ring connection
- Top metal ring connection

Connection design proposal

- Half part bolted
- Flange outside for ring integration

Scantling of the tower

<u> </u>	· — · — · — · — ·	
	-	
	I	

LAYOU	T FR	P TOWER	TOTAL =	21.81	m²	RESIN SR INFUGE	REEN 810 - INFUSION	PROCESS	MAI	N THICKNESS	14.574			TOTAL WEIGHT	445
ORDEN	N°	QUANTITY	MATERIAL	ANGLE FIBRE	WEIGTH DRY (g/m2)	ANGLE ROLL	RANGE (DISTANCE FROM BASE)	LONGITUDINAL OVERLAP (mm)	TRANSVERSE OVERLAP (mm)	ROLL WIDTH (mm)	THICKNESS LAYER (mm)	WEIGHT LAYER (kg/m2)	SURFACE (m2)	MATERIAL AREA (m2)	WEIGHT (kg)
OUTER	-	-	PAINT	-	-	-	FULL	-	-	-	-	-	21.8	21.8	-
	-	-	GELCOAT	-	-	· ·	FULL	· ·	-	-	-	-	21.8	21.8	-
	1	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	FULL		-	1220	0.513	0.769	21.8	21.8	16.8
	2	1	ZOLTEK PX35 0/90° MULTI. FABR. MD600	0°/90°	608	LONGITUDINAL	FULL	-	-	1270	0.616	0.923	21.8	21.8	20.1
	3	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	FULL	-	-	1220	0.513	0.769	21.8	21.8	16.8
	4	1	ZOLTEK PX35 +/-45° MULTI. FABR. MD600	±45°	608	LONGITUDINAL	FULL	-	-	1270	0.616	0.923	21.8	21.8	20.1
	5	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	FULL	-	-	1220	0.513	0.769	21.8	21.8	16.8
	6	1	ZOLTEK PX35 0/90° MULTI. FABR. MD600	0°/90°	608	LONGITUDINAL	FULL	· ·	-	1270	0.616	0.923	21.8	21.8	20.1
	7	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	5000	-	-	1220	0.513	0.769	13.8	13.8	10.6
	8	1	ZOLTEK PX35 +/-45° MULTI. FABR. MD600	±45°	608	LONGITUDINAL	FULL		-	1270	0.616	0.923	21.8	21.8	20.1
	9	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	FULL	-	-	1220	0.513	0.769	21.8	21.8	16.8
	10	1	ZOLTEK PX35 0/90° MULTI. FABR. MD600	0°/90°	608	LONGITUDINAL	5500		-	1270	0.616	0.923	14.9	14.9	13.7
	11	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	FULL	-	-	1220	0.513	0.769	21.8	21.8	16.8
	12	1	ZOLTEK PX35 +/-45° MULTI. FABR. MD600	±45°	608	LONGITUDINAL	6000	-	-	1270	0.616	0.923	15.9	15.9	14.7
	13	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	6500	-	-	1220	0.513	0.769	16.9	16.9	13.0
	14	1	ZOLTEK PX35 0/90° MULTI. FABR. MD600	0°/90°	608	LONGITUDINAL	FULL		-	1270	0.616	0.923	21.8	21.8	20.1
	15	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	FULL	· ·	-	1220	0.513	0.769	21.8	21.8	16.8
	16	1	ZOLTEK PX35 +/-45° MULTI. FABR. MD600	±45°	608	LONGITUDINAL	7000	-	-	1270	0.616	0.923	17.9	17.9	16.5
	17	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	TULL	· ·		1220	0.513	0.769	21.0	21.0	16.8
	18	1	ZOLTEK PX35 0/90° MULTI. FABR. MD600	0°/90°	608	LONGITUDINAL	7500		-	1270	0.616	0.923	18.8	18.8	17.3
	19	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	8000	-	-	1220	0.513	0.769	19.6	19.6	15.1
	20	1	ZOLTEK PX35 +/-45° MULTI. FABR. MD600	±45°	608	LONGITUDINAL	FULL	· ·	-	1270	0.616	0.923	21.8	21.8	20.1
	21	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	8500	-	-	1220	0.513	0.769	20.4	20.4	15.7
	22	1	ZOLTEK PX35 0/90° MULTI, FABR. MD600	0°/90°	608	LONGITUDINAL	FULL	· ·	-	1270	0.616	0.923	21.8	21.8	20.1
	23	1	ZOLTEK PX35 50K UNI. FABR. UD500	0*	516	LONGITUDINAL	FULL	-	-	1220	0.513	0.769	21.8	21.8	16.8
	24	1	ZOLTEK PX35 +/-45° MULTI. FABR. MD600	±45°	608	LONGITUDINAL	FULL	-	-	1270	0.616	0.923	21.8	21.8	20.1
	25	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	FULL		-	1220	0.513	0.769	21.8	21.8	16.8
INNER	26	1	ZOLTEK PX35 50K UNI. FABR. UD500	0°	516	LONGITUDINAL	FULL	-	-	1220	0.513	0.769	21.8	21.8	16.8
											Ø This document is in no case shally	based on the property of Compa or particly be coopied, shows or	es Ingenierio y Sistem r given to the third po	se S.A. and must my Company's conserv.	

This docurr in no case	wrt is boar shody or y	COM	ty of Compass Ingenieria y Sistemas 3A and must ed, shown or given to the third party Compassion consert. PASS manyacounter	
	NAME	8472		
PREPARED	MIR	17/01/2022		
REVERSED	2.00	17/01/2022	BOOUNENT TITLE:	
CHECKED	D5A	17/01/2022	LAVOUT TOWER	
APPROVED	Ram	17/01/2022	LATOOT TOWER	
REPLACE	N. 120	CENERAL DES	DRAWING N.S. P101	REVIEW
SALT PERSONNEL (n. 220	SC4	LE: 1/40 UNT: 1/40 SHEET 1	or 1

Tests

- Validation of the feasability (infusion of big thickness)
- Validation of the overlapping
- Validation of the thickness
- Validation of the resine casting process

Design :

- Pre design of the connection area
- Design of the mould
- Definition of the building process

Mould cutting and milling :

- 5 axis plugs milling
- 3 axis structure cutting

Surface preparation :

- Mould surface with special flex ply wood
- Lamination of the surface

Mould finishing :

- Fairing for the local defects
- Primer application
- Paint application
- Vaccum test

Plugs integration in the mould

- Should support all the layers
- Should get out with the part
- To be trim to keep a nice shape

Half mast production

Lay up

- Management of the overlapping
- Fabric with vaccum every night
- Infusion

Half mast production

- Extra lenght cutting
- Integration of the metal inserts
- Building of the drilling trolley

Mast geometry setting

Assembly of the mast

- Drilling
- Threading
- Integration of plates
- Bolting to the torque

Integration of mast's supports

- Electric boxes
- Cable tray
- Cameras

Integration of optic fibre

Tower finishing

- Fairing
- Primer application
- Painting
- Sticker

Turbine housing demonstrator

João CARDOSO, INEGI

TIDETEC's tidal turbine

Objective: Design and Manufacturing of a Turnable Turbine Housing demonstrator in FRP materials with the purpose to verify the technical and economic feasibility of using FRP materials in the TIDETEC's tidal turbine housing.

Design for Manufacturing (DfM)

Manufacturing Process: **Towpreg Winding/AFP**

Disadvantages:

- Controllable and repeatable process;
- Lower material waste;
- Precision placement of tape;
- Ideal for making cylindrical and/or hemispheric components;
- Increased material throughput;
- Improved composite structure quality;
- Quicker manufacturing time.

Disadvantages:

- High material cost;
- Requires cold storage in freezer and difficult handling;
- May require oven or autoclave cure.

Doubling AFP as a Filament Winder

Source: Addcomposites

Source: Project PROCOMP

Design for Manufacturing (DfM)

Cons:

- Assembly with nut and bolts between 3 and 4 is
 - impossible to reach;
- Requires use of 2 mandrels.

Pros:

- Smoother angles;
- Only requires one steel mandrel;
- Has demoulding angle which facilitates manufacturing.

Cons:

- Studs are not necessary;

- Joining 3 and 4 with adhesive defeats the purpose
 - of turbine accessibility for maintenance;

• Domes' geometry undefined for manufacturability.

Design for Manufacturing (DfM)

Low pressure Dish Head

Torispherical Dish Head Type Klopper (w/ flange) - DIN28011

Composite is sagging and not filling the mandrel; It wasn't possible to find a good pattern and winding angle to close the tops.

Pros:

• Cheaper and easier to manufacture the mandrel.

Cons:

- Not windable in the software if considering demoulding angle;
- High likelihood of twisted and/or breakage of tows.

No demoulding angle; Twisted fibres.

Pros:

• Easier to manufacture mandrel.

Cons:

• Not feasible in winding software.

Angle: $3,82^\circ \rightarrow \text{too high}$

Height: 91 and 104 mm

Design for Manufacturing (DfM)

Context

Pros:

Windable but with limitations.

Cons:

• Harder to manufacture mandrel because of peripheral weld near the radius.

Angle: 3,37°

Height: 91 and 104 mm

Pros:

- Smoother angles (closer to TSI design shape);
- No twisting of fibres;
- Good demoulding angle.

Cons:

• More expensive manufacture.

Angle: 1,55°

Height: 129 and 169 mm

Design for Manufacturing (DfM)

Context

Pros:

Windable but with limitations.

Cons:

 Harder to manufacture mandrel because of peripheral weld near the radius.

Angle: 3,37° Height: 91 and 104 mm

Numerical Analysis & Validation

Results obtained in the static analysis:

Results obtained in the modal analysis:

Output Set: Mode 1, 19.67529 Hz Deformed(2,9958): Total Translation

Output Set: Mode 3, 39.24968 Hz Deformed(5,8377): Total Translation

Modular Building Strategy

Strategy A

More difficult maintenance procedure and connections/assembly

Unnecessary access points and extra steps in manufacturing and connections/assembly

Doesn't enable maintenance or fitting in the turbine. Cutting the housing defeats the purpose of destroyable mould

Connections

Adhesive Joint between Main body & Side Fairing // AFT Cover & Side Fairing2

Assembly Plan

Mandrel Design: Shaft Diameter vs Deflection

	Maximum deflection of shaft [mm]					
φ Shaft [mm]	Self Weight	Self Weight+ Tension of 10 fibres (80N*10 or 342,616Nm)				
45	1,642	3,488				
50	1,127	2,346				
55	0,809	1,651				

Min. tension each fibre	10	N
Max. tension each fibre	80	Ν
	-	-

URES (mm)

- 1,127e+00 1,015e+00 9,020e-01 7,892e-01 6,765e-01 5,637e-01 4,510e-01 3,382e-01
- 2,255e-01
- 1,127e-01
- 1,000e-30

Mandrel Design: Assembly Drawing

QTD.

FOLHA 1/16

Different Configurations

Finished Mandrel

Negative draft angle due to sinking/warping

Good draft angle after correction

Manufacturing Preparation **Configuration and Assembly of Robot Setup**

KUKA KR – 120 R2700 – Linear Axis KUKA KL 40000

Manufacturing Preparation

2° Middle layers up to the top of the fairings

人間に見見見四のよろうな諸親親の

このこの見るころになって認識問題のないのこの見の見ののとうできるないよう、この しまくの

Manufacturing Preparation

Process Simulation (AddPath)

Chever Physics Phys. Phys. Rev. Phys. Rev. a Phys. 7 (1997) 1997

Manufacturing Trials

Ongoing: First trials

Toray MR014-2 Towpreg Resin

324gsm Epoxy 34% resin by weight Thickness 0,32mm and Width 6,35mm

Re-spooling from bobbin onto cassete No available material already on cassete

Placement of the first tows

Manufacturing Trials

Ongoing: First trials

Toray MR014-2 Towpreg Resin

324gsm Epoxy 34% resin by weight Thickness 0,32mm and Width 6,35mm

Re-spooling from bobbin onto cassete No available material already on cassete

Placement of the first tows (4x speed)

Next Steps

• Manufacturing of the turbine demonstrator

• Non destructive testing of the demonstrator

Next Steps

- Guidance notes for the production of large FRP OWTP
- 1. Introduction
- 2. Background
- 3. Modular Production <u>3.1. Product Tree</u>
- 4. Production Processes
 - 4.1. General
 - 4.2. Vacuum Infusion
 - 4.3. Filament Winding (Towpreg)
- 5. Joining
 - 5.1. Bolting
 - 5.2. Bonding
 - 5.3. Welding
- 6. Cutting and Machining
- 7. Quality System 7.1. Quality System Evaluation
- 8. Quality Requirements
 - 8.1. General Acceptance Criteria
 - 8.2. Control Tests
 - 8.3. Control Records
 - 8.4. Maintenance
- 9. Documentation
- 10. Aspirations and Future Work
- 11. References

Development, engineering, production and life cycle management of improved **FIBRE-based material solutions** for the structure and functional components of large offshore wind enerGY and tidal power platforms

D5.4 (WP5): Guidance notes for the production of large FPR OWTP

sponsible Partner: INEGI Contributor(s): INEGI, TUCO, IXBLUE, BV

Current Progress

THANK YOU

