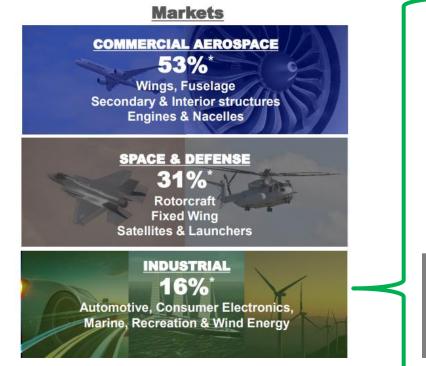


High-Performance Composites in Commercial Marine: Challenges and Opportunites

Thomas James Marine Business Development Manager E-LASS 13th September 2022

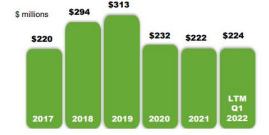
HEXCEL'S PURPOSE


To propel the future of flight, energy generation, transportation and recreation **through excellence in advanced material solutions** that create a better world for us all.

One Hexcel Innovation Accountability Responsibility

HEXCEL CORPORATION : ADVANCED COMPOSITE MATERIALS

- 2021 Sales | \$1.325 billion
- 23 manufacturing sites | 4,800 employees



INDUSTRIAL

Automotive | Consumer Electronics | Infrastructure Marine | Recreation | Wind Energy

- Broad range of performance applications leveraging Hexcel carbon fiber, Hexcel resin formulations & process expertise, and third-party glass fiber
- Active in 30+ different Industrial sub-markets
- Growth opportunities: marine, energy storage/electric vehicles, consumer electronics, and industrial pipes
- Wind energy comprises ~35% of Industrial

Commercial Marine is considered as an area of strategic growth within Hexcel

WE MAKE A **WIDE RANGE** OF HIGH-PERFORMANCE MATERIALS

Everything from carbon fibers and reinforcement fabrics to prepregs, honeycomb core, tooling materials and more . . . from raw materials to fly away parts . . . vertical integration is a strength and a differentiator.

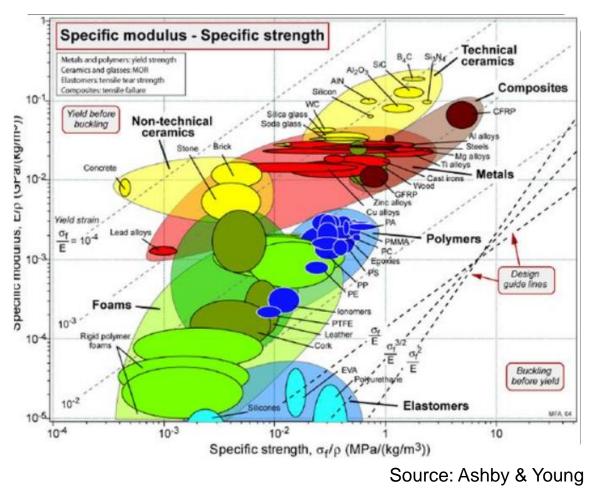
HEXCEL

Strong | stiff | lightweight | fatigue resistant | corrosion resistant

Our Strengths in Marine

- Long term relationship with key marine player
- Innovative Technologies / Broad Portfolio / Vertical integration
- Class approved marine products (DNV, BV, LR)
- Quality excellence at all production sites
- Technical support available from all locations
- Three **R&T centers** (USA, UK, Austria)
- Aerospace experience of long-term project management and contractualization (OTD, Buffer stock, management of specifications ...)

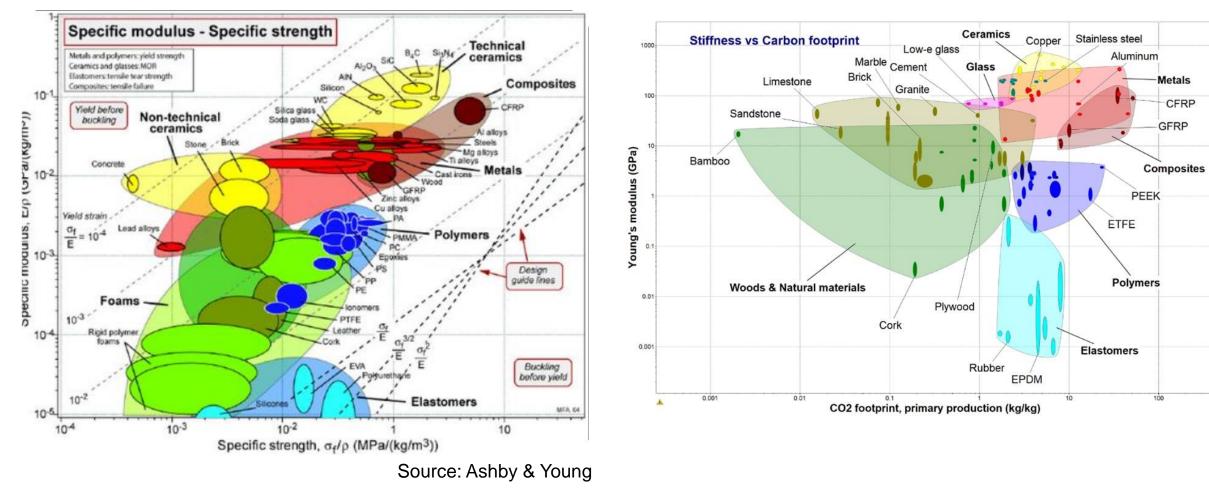
Our experiences in other industries can benefit Marine customers


Sustainability challenges of composites

Embodied CO² within our materials Energy required to process our materials End-of-life

SUSTAINABILITY: MATERIAL SELECTION

1996



SUSTAINABILITY: MATERIAL SELECTION

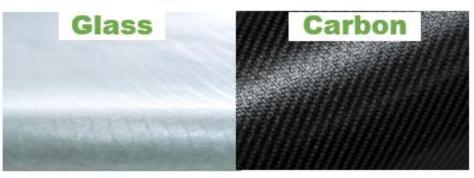
1996

2022

SUSTAINABILITY: HEXCEL IN TRANSITION

2030 Sustainability Targets | 2019 baseline

All environmental measures are intensity-based; safety measure based on 200,000 worker hours



SUSTAINABILITY: HEXCEL IN TRANSITION

HexPly[®] Nature Range

Bio-derived resin systems

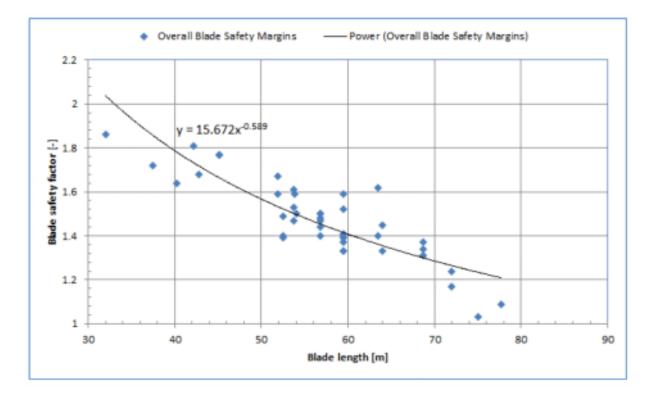
- Unchanged resin characteristics
 - Mechanical performance
 - Processing properties
 - Storage requirements
- Products are fully compatible with the standard range

Optional – Flax reinforcement

- Renewable resource, cultivated Europe
- Woven and NCF reinforcements
- Flax exhibits excellent performance compared to other natural fiber types

HEXCE

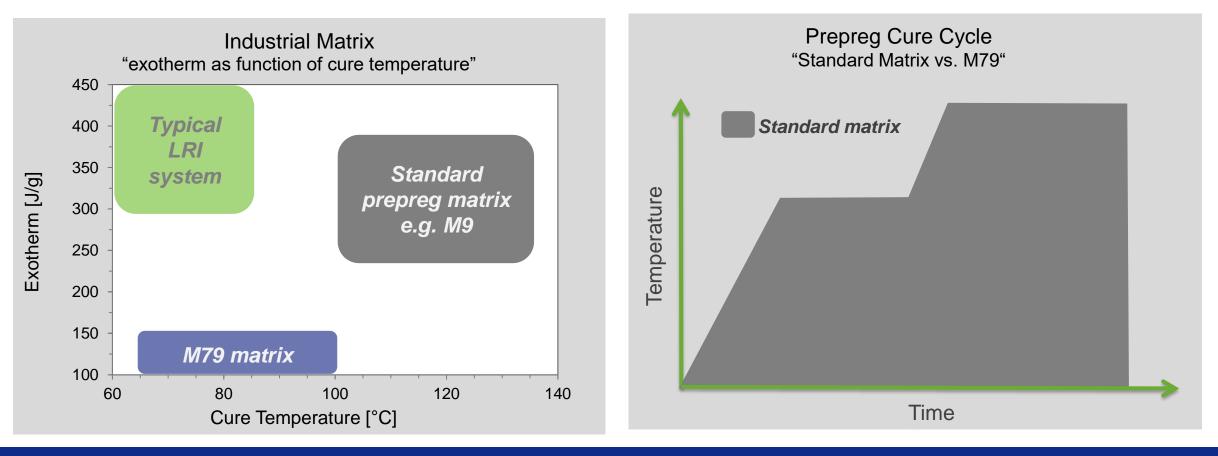
 Potential to improve impact resistance and vibration damping


Prepregs with bio-derived resin content reinforced with glass, carbon or flax reinforcement

LEARN FROM WIND ENERGY: USE LESS MATERIAL...

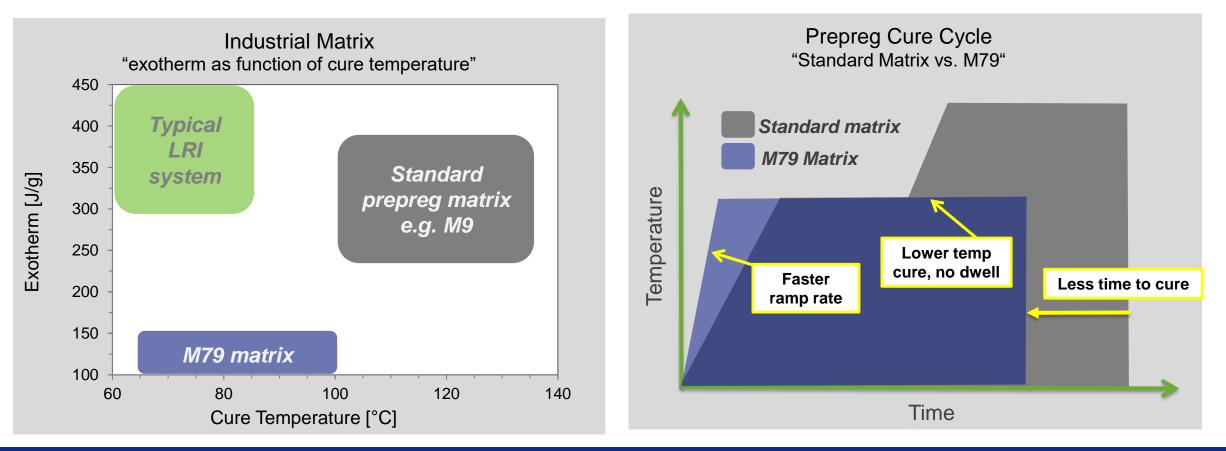
Blade development trends

- Ongoing reduction of Safety margins due to mass/cost reduction
 - Increased responsibility of suppliers to deliver zero defect material
 - Further improve quality control
 - In depth specification requirements
- Ongoing reduction Time-to-market
 - Expecting today 45-50 weeks
 - Scalable processes
 - Process robustness


Source: LM Windpower, 2019

Optimised materials exist from >20yrs of turbine development, Marine can benefit

SUSTAINABILITY: REDUCE ENERGY REQUIRED TO PROCESS


HexPly[®] M79 The fastest low temperature cure out-of-autoclave prepreg on the market

SUSTAINABILITY: REDUCE ENERGY REQUIRED TO PROCESS

HexPly® M79 The fastest low temperature cure out-of-autoclave prepreg on the market

Lower exotherm energy allows short cure cycles for thick structures

HexPly[®] Prepregs

The right product for the right market

HexPly[®] M79*

Low temp.cure System

- Cure Temp.: **70-80°C in 4-8h**
- T_g 105°C
- Shelf life > 8 weeks @ +23 °C

HexPly[®] M9.6H / M9.6GF*

Cure cycle "Allrounder"

- Cure Temp.: 85°C 150°C
 - T_g 120°C

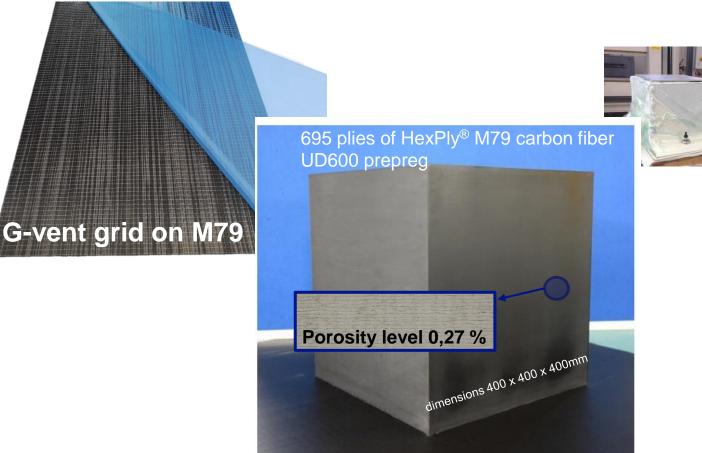
DNV.GL

MARITIME

- Enhanced fatigue performance
- Shelf life > 8 weeks @ +23 °C

HexPly[®] M9.6H carbon prepreg in action

Chantiers de l'Atlantique Silenseas cruise ship concept which uses composite Solid Sail[®] propulsion as well as dual-fuel engines to reduce emissions and operating costs


We no longer need to store prepregs in a freezer...

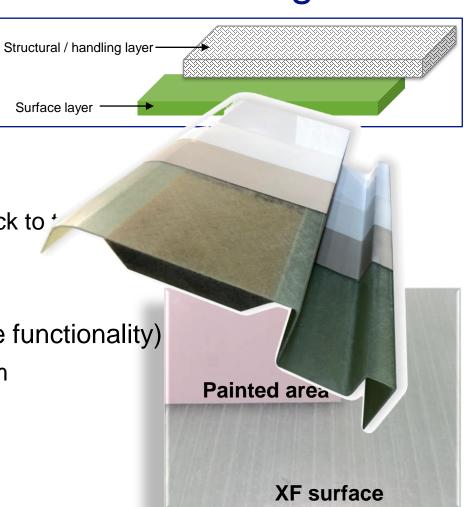
02022 Hexcel. All rights reserved

HexPly® G-vent technology for Carbon UDs CARBON CUBE EXPERIMENT

- Can be processed out-of-autoclave
- Ensures super low porosity for superior performance
- Reduces energy required to process

400mm cube: Cure at 80deg C for 6hrs

A technology breakthrough for low-energy processing of high-performance composites

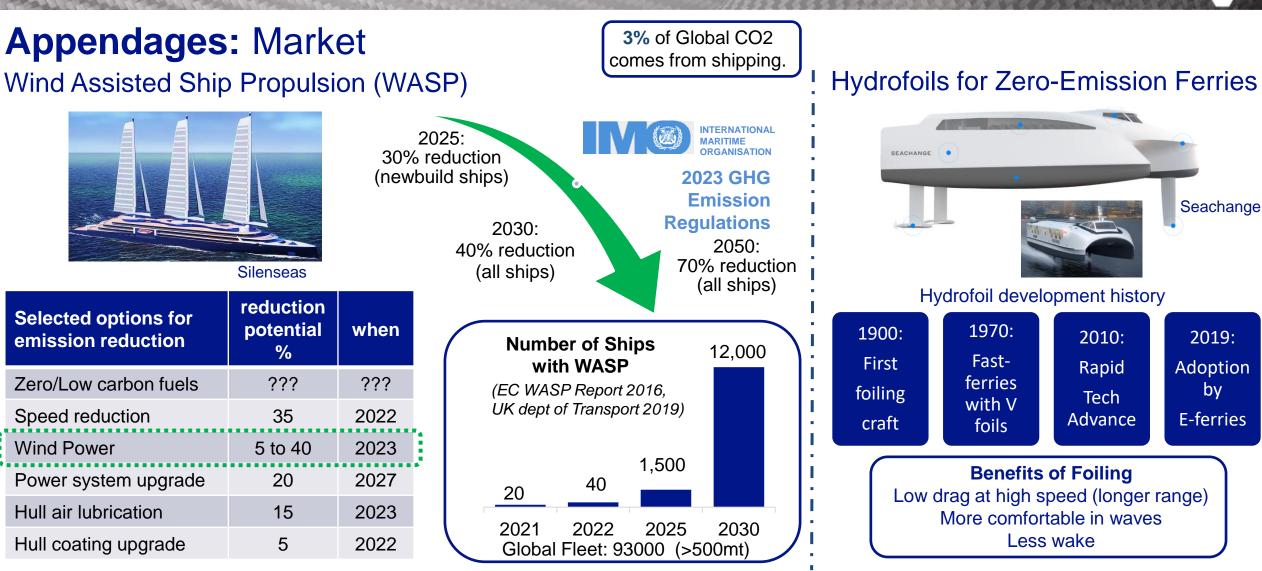


Hexcel XF: Paint Ready Surface Finish on Demoulding

XF single ply

- Leverages M79 resin chemistry
- Obviates need for in-mould gel coat
 - Can offer increased throughput / better mould utilisation
- Minimal surface preparation
 - No pinhole, overlap and print through defects
- Easy to use Surface Solution (good conformability and initial tack to
 - Maintains prepreg product form factor
 - "Clean" technology compared to gel coats
- **Single Ply** solution (= Structural layer with integrated surface functionality)
 - Surface matrix is integral and continuous with laminating system
 - Non-parasitic XF ply also contributes to laminate structure
 - Component weight saving
- DNV certified

HEXCEL


Marine: Targeted market subsegments

The decarbonisation of commercial shipping is part of our industrial growth strategy

©2022 Hexcel. All rights reserved.

HEXCEL

Commercial Marine Appendages is a new segment; Sustainability is the key driver

Structures:	Market	Ship type	Composite	Market state		700 ships scrapped per year		
		General Cargo	Low performance	Commodity with barriers: FST, End-of-life		3500t stee	3500t steel each= 2.5Million tonnes 90% recycled	
LNG Demand to double by 2040	FOCUS	Gas Carriers	Specialised	Develo	ping			
		Zero Emission Ferries	High performance	New		L.	EC Vision: 100 'Smart' cities by 2030	
	Tank Liners for LNG Carriers		Dimension		Primary Stru Zero-Emissi			
Shall LINC Carrier - 16.000 IN	250		Length (m)		25			
	30000t		Capacity	200 PAX				
Gas carrier Under d		elopment	Products C-NCF, Pre		oreg			
t all	XXX Pro		duct requirement		Existing range			

Gas propulsion

High-performance composites are an enabling technology, for some applications...

Competition Sailing: Transition to sustainable materials

IMOCA60 rule 2022

Appendix G: Material limitations, construction methods, finishing products. AG.0 DEFINITION Alternative material: Material able to be made from a natural fibre (organic or mineral matrix), recycled material or composite materials compatible with the human body and intended to be used alone or in combination with other materials (resin) of the same kind for the design of a composite.
SailGP SAILGP ANNOUNCES NEW ZEALAND AS THE FIRST-EVER WINNERS OF THE IMPACT LEAGUE
27 MARCH 2022 • NEWS • 🗗 🎔
The Criteria SUSTAINABILITY // INNOVATION // ON-WATER // MERCHANDISE // WASTE & SINGLE-USE PLASTIC // TRAVEL ACCOMMODATION // FOOD // USING YOUR VOICE // DIVERSITY & INCLUSION // COLLABORATION

Americas Cup Rule 2022

3.7 Construction of a hull shall meet the following criteria:

$$k_{\text{lca}} + \sum_{i=1}^{n} a_i (k_{\text{iplug}} + k_{\text{imould}}) \ge 2.5$$

where:

a, is the proportion of the **hull surface** manufactured by a distinct tooling approach; n is the total number of distinct tooling approaches required to build the hull surface;

- otherwise
- The life-cycle analysis in Rule 3.7 shall; 3.8
 - be submitted as a written report to the Measurement Committee; (a)
 - follow the guidelines defined by ISO 14040/14044; and (b)
 - be a cradle-to-gate life-cycle analysis with at least: (c)
 - the carbon footprint represented in kgCO2e; and (i)
 - (ii) the production of solid waste represented in kg,

Disclaimer

This document and all information contained herein is the sole property of Hexcel Corporation. No intellectual property rights are granted by the delivery of this document or the disclosure of its content.

This document shall not be reproduced or disclosed to a third party without the express written consent of Hexcel. This documand its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, Hexcel will be pleased to explain the basis thereof.