

Lightweight composite hydrogen storage tank

E-LASS SEMINAR #16

ERWAN JUIN

13 SEPTEMBER 2022

Content

- Presentation of Polymer, Fibre & Composites Department
- Overview on Hydrogen
- Summary of previous and current projects
- Ambition

Polymer, Fibre & Composites department

Overview and location

- Part of the Materials and Production division at RISE
- Around 120 researchers, scientist, technicians and project managers
- Three main focus:
 - Fibre technology
 - Polymer technology
 - Composite material technology
- Work across many industries:
 - Aerospace, marine, automotive, space, defence, packaging construction, furniture, textiles
- History of research on storage tanks:
 - Technology knowledge from 1990 onwards
 - Working with hydrogen specific project from 2010

Overview

The hydrogen economy in Europe in 2050

~24%

~560 Mt

~EUR 820bn

~15% ~5.4m

of final energy demand¹ annual CO₂ abatement² annual revenue (hydrogen and equipment) reduction of local emissions (NO_x) relative to road transport jobs (hydrogen, equipment, supplier industries)³

Estimated figures

Motivation

Transport accounts for approximately 8 gigatons of CO₂ emissions globally

Heavy transport accounts for just over 4 gigatons

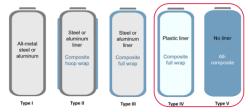
=> Can be converted to hydrogen operation

Potential to be very sustainable specifically if linked to a sustainable energy source.

Previous and current projects

CHATT - Project facts

• Full Title: Cryogenic Hypersonic Advanced Tank Technologies

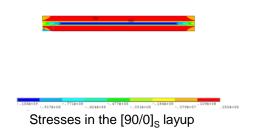

• Project time: 2012-2015

Funding programme: FP7 Europe

Participants: 11

• Budget: 4 M€

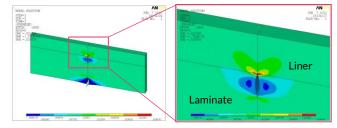
- Application: a 50-meter-long reusable liquid hydrogen rocket booster
- Project focused on the design of 4 scaled cryo-tanks in CFRP
 - Dry wounded tank
 - Type 4 (with liner)
 - Type 5 (linerless tank)
 - Multi bubble tank



CHATT - Work realized by RISE

Development on the tank with liner:

- Specification, Material selection
- Theoritical design:

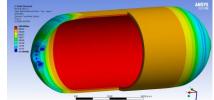

- FEA of residual stress from manufacturing

• Test of liners with and without laminate

Manufacturing of the liner less tank

FEA of micro-cracking behaviour of liner with laminate

Stress distribution in a [90/0]_s laminate


Personal Air Land Vehicule Application

- Project time: 2020-2021
- Work for KCTFCH
- Development of a 50 liters Type 5 tank operating at 700 bar
- Design solution:
 - Thin-ply laminate (Textreme 50 UD)
 - Traditional layers (T700)
 - Aluminum dome ends
 - Process: Wet winding

Transverse fibre direction stress

Fibre direction stress

CF "liner" with dome ends for final

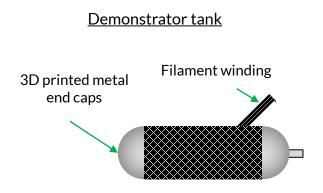
Final winding

RI kcarbon

Finished

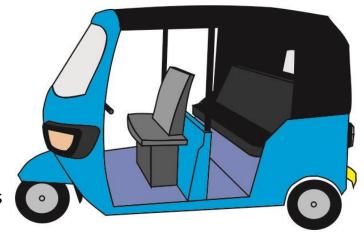
- Research Institutes of Sweden

LH2-Tanks - Project facts


- Full Title: Linerless liquid hydrogen aircraft tanks using thin ply composites
- Project time: July 2021 to June 2023
- Funding programme: "Fossil free aviation" Swedish Energy Agency
- Participants: RISE, Chalmers University, KonveGas, Linköping University,
 Oxeon

LH2-Tanks – Goals and role of RISE

- Improvement of existing material models for thin ply composites
- Determination of material properties at RT and at -253°C (LH₂)
- Development of simplified **fatigue model** for **cryogenic temperatures**
- Design and manufacture of demonstrator tank for liquid hydrogen (LH₂)
- Study of manufacturing routes for industrialisation
- Role of RISE: Composites modelling, manufacture & testing


El Tuk - Project facts

- Full Title: Increasing knowledge for small, environmentally friendly, safe, cost and energy efficient vehicles through construction
- Project time: October 2021 to December 2023
- Funding programme: "Energy and Environment" Swedish Energy Agency
- Participants: RISE, Clean Motion, BEVI, Adigo, myFC, Oxeon
- Budget: 9.6 MSEK

El Tuk – Goals and role of RISE

- Convert two fossil-powered tuk-tuks to:
 - One with **electric powertrain** (battery and electric engine)
 - One with fuel cells, electric engine, battery and hydrogen tank
- Develop a solar cell body
- Compare characteristics of the various vehicle concepts produced

- Increased understanding of the safety requirements that should apply to small vehicles
- Role of RISE:
 - Risk investigation of fuel cell vehicles and safety
 - Design of powertrain and electric machine design including gear
- Design and manufacture of hydrogen tank in composite material
- Validation of vehicle concepts

Tech4H2 - Technologies and innovations for a future sustainable hydrogen economy

- A new competence centre
- Broad research disciplines with hydrogen and vehicle relevance
- Focus on technology integration and development for heavy transport:
- Partners:

16

Ambition

Application to marine

- Knowledge gained from aerospace and automotive to be transferred and applied to marine
- Goal: To develop hydrogen as a fuel technology for the marine environment
- Focus on storage and transfer: i.e. from hydrogen storage on land to transfer of hydrogen to vessel and then storage of hydrogen on the vessel.
- Work subjects:
 - 1. Early study comparing liquid vs. gas options vs. vessel size and type
 - 2. Study on policy and regs, risk management, gaps and improvements
 - 3. Sustainable solutions reuse, recycling and biobased etc.
 - 4. Scale testing of components with a reference to a marine environment e.g. fire retardancy, leakages and salt environments
 - 5. Development of a virtual reality test system

Erwan Juin
Erwan.juin@ri.se
+46 76 784 43 07
* * * * * * * * * *

