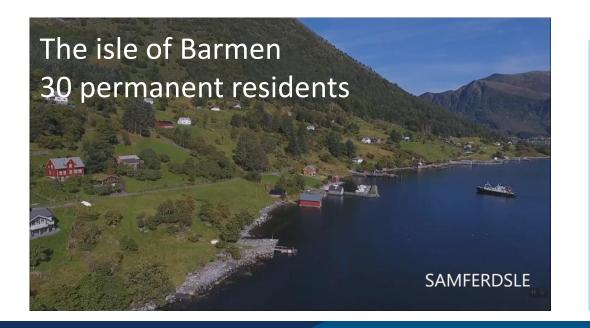
cDynamics


GRP car ferry "MF Barmen" operating experiences and updates on the "Cost-FRM" project

> Knut Inge Edvardsen E-LASS Ulsteinvik 13-09-2022

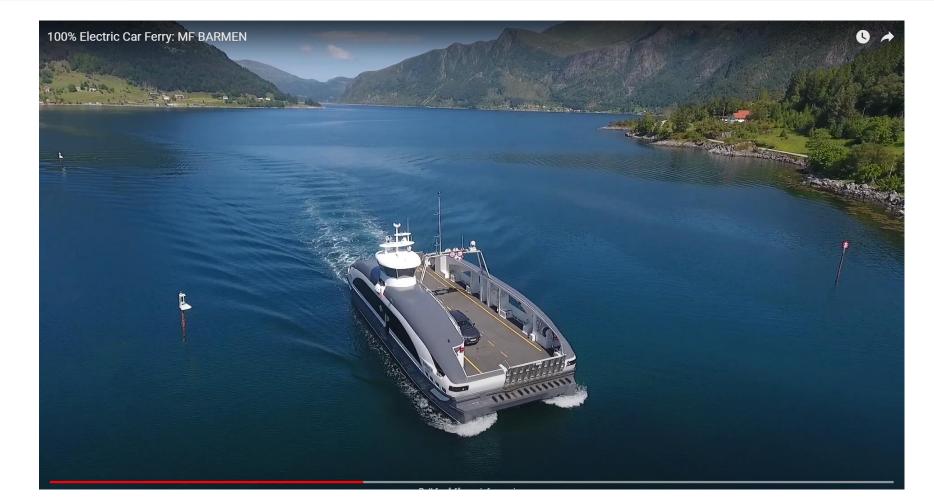
MARINE || COMPOSITES || RENEWABLES || SUBSEA

Barmen ferry project

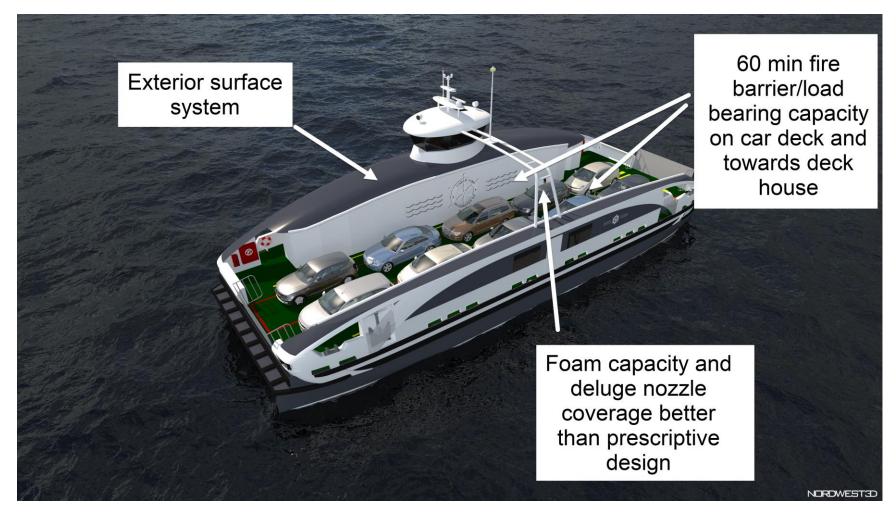
- April 2018: 10 year contract awarded from the Norwegian road administration (Statens Vegvesen) to shipowner Vidar Hop Skyssbåter
- Building contract awarded to Maaloy shipyard
- Operational january 2020

- Composite shipyard in north-west between Bergen and Ålesund
- 20 employees

- Family owned shipowner in Sogn in western Norway
- 13 vessels
- 29 employees



Sub-contractors:


Main data

- Name: «Barmen»
- Build: 23
- Design: Easyform / Sea Technology
- Length: 29.98 m
- Width: 11 m
- 10 cars
- 50 passengers
- Propulsjon: All electric
- Material: GRP Sandwich

https://youtu.be/GeuNrCtJnDU

Barmen ferry - Fire safety design

Start up experience

- MF Barmen was the 2nd all-electric ferry in Norway. Rules and regulations have been establish during building process.
- The large uncertainties in equipment and requirements when vessel was designed led to too low hull volume/high weight. Summer of 2020 a 35m3 volume was added on inside of hull raising the WL by 250mm.
- Propulsion system The whole system was new. Design principle to avoid single point of failure. All systems have redundancy/are dual. There has been a lot of work on getting all systems up on running smooth.

Overall

- Allthough some start-up issues.
- The overall cost-effect for choosing GRP is confirmed.
- Composite car ferry gives
 - less maintanace cost
 - less power consumption
 - full design freedom
- Composite is a good choice for small and medium size car ferries.

Parameter	Steel Ferry	GRP Composite	Cost effect	Comment
	(Estimated)	ferry		
		(Barmen ferry)		
Hull material	Steel hull weight	GRP Sandwich hull	+10 MNOK	Building cost hull
(CAPEX)	125 tonne	weight 50 tonne		
Hull material			-6.2 MNOK	Maintenance cost
(OPEX)				reduction: -0.5
				MNOK pr year
Battery pack	250 kWh	150 kWh	-0.25 MNOK	Smaller battery pack
(CAPEX)				
Propulsion	2 x 250 kW	2 x 150 kW	-0.2 MNOK	Smaller engine
(CAPEX)	(2 x 4000 kg)	(2 x 2300 kg)		
Lifetime energy	1167 MWh x 20 =	700 MWh x 20 = 14	-5.8 MNOK	Energy consumption
consumption	23 TWh	TWh		reduction: -0.47
1),2),6)				MNOK pr year
Total cost			-2.45 MNOK	
reduction				

Assumptions:

- 1) Steel ferry total operational displacement: 200 t
- 2) GRP ferry total operational displacement: 120 t
- 3) Battery pack and thruster capacity increases linearly by weight (simplification)
- 4) Energy cost: 1 NOK/kWh
- 5) Present value interest rate: 5%
- 6) 20 years, 3000h/year, 70% of installed effect, 10% power loss during charging

Cost-effective Fire-Resisting material (Cost-FRM)

- Budget 1.15 million €
- Direct spin-off from the Barmen ferry project
- Funded by Norwegian Research council
- Partners:
 - Sea Technology/Maaloy verft Shipyard
 - Libra plast Manufacturar of ship doors and hatches
 - cDynamics Project management and consultancy
 - RISE Develop new fire models and perform fire tests
- The outcome of the project will be new solutions for composite panel and door constructions, complying to the International code for application of fire test procedures (FTP Code).

CDynamics

Work packages

	Name	Leader	Other participants	Description
WP1	Fire resistant layups	cDynamics	RISE, Sea Technology, Måløy Verft, Easy Form, Libra	Industrial research Review existing composite panels and their components. Identify alternative material solutions. Define promising new layups.
WP2	Fire resistant panel	Sea Technology	RISE, cDynamics, Måløy Verft, Easy Form	Industrial research Experimental production of panel with integrated fire protection system. Develop fire resistant panels. Test panels.
WP3	Fire resistant door	Libra	RISE, cDynamics	Industrial research Experimental production of door with integrated fire protection. Develop fire resistant doors. Test doors.
WP4	Fire-spread model	RISE		Industrial research Review literature and state-of-the-art technology on fire-spread prediction. Analyse empirical data from WP2 and WP3. Develop fire property prediction model.

Progress plan

- 2020-2022: Studies (WP1/WP4)
- 2022: Small scale testing (WP2/WP3)
- 2023: Large scale testing (WP2/WP3)
- 2024: Develop fire spread model

Hovedaktivitet /Milepæl	Fra år	Kvartal	Til år	Kvartal
WP 1: Fire resistant layups	2020	1	2022	4
WP 2: Fire resistant panel	2022	1	2023	4
WP 3: Fire resistant door	2022	1	2024	4
WP 4: Fire-spread model	2020	1	2024	4
M1.1 Fire resistant systems report	2022	4	2022	4
M1.2 Define fire resistant layups for tests	2022	4	2022	4
M2.1 Experimental production of panel	2023	2	2023	2
M2.2 Test results small scale panel	2022	3	2022	3
M2.3 Test results for full scale panel	2023	3	2023	3
M3.1 Test results full scale door	2024	2	2024	2
M4.1 Sumarize fire-spread report	2024	2	2024	2
M4.2 Prototype of fire-spread model	2024	3	2024	3

IN-HOUSE COMPOSITE WORKSHOP

Project focus area

- Materials to be suitable for shipyards
- Material production processes to be suitable for shipyards
 - Similar to already established processes for composite
 - As low investment cost as possible in new production equipment
 - Low curing temperatures
- Low/reasonable cost materials

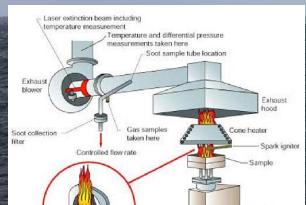
WP2 - Panel development

- Resins
 - Phenolics
 - Benzoxazine
 - Polyfurfuryl (PFA)
 - Combined with vinylesters, polyesters, epoxy
- Fibers
 - Glass
 - Carbon
 - Basalt

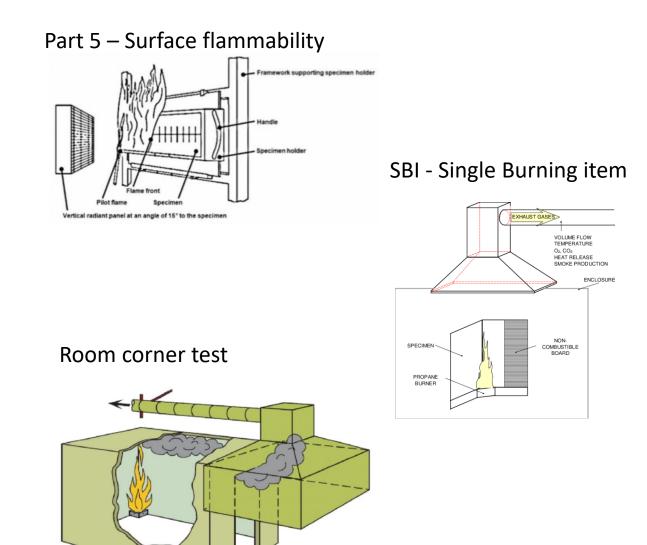
- Core
 - Phenolics
 - Balsa
- Surface
 - Ceramic paint
 - Intumescent paint/gelcoat
 - Other surface
 - Challenge: Finding a good quality surface that fulfills requirements

Configurations

- Single material laminate
- Hybrid laminate
 - Thickness/layup of each material


Status CostFRM – July 2022

Different layups for first vacuum infusion.


11 layups prepared for cone calorimeter testing.

Further work

- WP2 Composite panel
 - Evaluate Cone Calorimeter results
 - Progress with larger scale test
 - FTP Code Part 5 / ISO 5658-2 "Surface flammability"
 - SBI (Single Burning Item) Building standard test, lower cost than "Room Corner test"
 - Room Corner Test
- Use panel results (WP2) for door design (WP3)
- Establish fire spread model (WP4)

EXPERTS IN ENGINEERING SIMULATION

MARINE || COMPOSITES || RENEWABLES || SUBSEA