

Structural batteries

Multifunctional composites for energy storage and ...

Dan Zenkert Kungliga Tekniska Högskolan (KTH)

Importance of weight in aerospace

Flying all-electric?

A319: 800 nm / 140 PAX

Energy Density of Kerosene12000 Wh/kgEnergy Density of Battery120 Wh/kg

- \rightarrow Conventional, 30 kg Kerosene/PAX
- → Fully Electric, 1000 kg Battery/PAX

Importance of weight for land transport

Need for electrification of future vehicles

Structural batteries a possible enabler?

Mechanical structure, m_s Rechargeable battery pack, m_b

Structural battery, m_{sb} $m_{sb} < m_s + m_b$

1500 kg Structure+systems

600 kg Batteries

The Li-ion battery

Device Architectures – Structural Battery

Laminated architecture

 Requires highly conductive electrolytes

Fibre architecture

 Does not require highly conductive electrolytes

Capacity of carbon fibers

Structural Battery Electrolyte

Bisphenol A dimethacrylate

Bisphenol A dimethacrylate and Bisphenol A ethoxylate dimethacrylate Bisphenol A ethoxylate dimethacrylate

Storage modulus 680 MPa Conductivity 1.5×10⁻⁴ S/cm

Ihrner et al, J.Mat.Chem.A., 5, 2017

Structural negative half cell – multifunctional performance

Electrochemical

Cycling efficiently Capacity ≈ 230 mAh/g

Mechanical (lamina data) $E_1 \approx 52 \text{ GPa} (\text{now} > 100 \text{ GPa})$ $E_2 \approx 1.7 \text{ GPa}$ $G_{12} \approx 1.5 \text{ GPa}$ $\sigma_1 \approx 1000 \text{ MPa}$ $\sigma_2 \approx 12 \text{ MPa}$ $\tau_{12} \approx 13 \text{ MPa}$ Vacuum Infusion of SBE into Carbon Fibers Dry and Spread Carbon Fibers

Johannisson et al, Compos Sci Technol, 162, 2018

Structural negative half cell - Interface

Uncycled sample

Electrochemically cycled sample

Phase-separation is bicontinuous at the carbon fiber interphase

Johannisson et al, Compos Sci Technol, 162, 2018

Positive electrode

One possible route

Coat active materials onto carbon fibres? Electrophoretic deposition of LiFePO₄

Hagberg et al, Compos. Sci. Technol., 162, 2018

On-going - Full Cell

Structural battery modelling – multifunctional performance

Designing a structural battery

- Comparing to a conventional carbon fiber composite plate
- Comparing to a standard lithium ion battery

Car roof

Original roof Steel Mass 18.7 kg Lithium ion battery 6.3 kg Updated roof Epoxy and carbon fibers Mass 5.7 kg Lithium ion battery 6.3 kg 51% mass saving versus original design

Multifunctional roof Structural battery Mass 9.6 kg Corresponding lithium ion battery 6.3 kg 62% mass saving versus original design 20% mass saving versus updated design

Electric ferry

Electric ferry

Original face sheets Epoxy and carbon fibers Mass 2.4 kg

Lithium ion battery 3.8 kg

Multifunctional face sheets Structural battery Mass 5.5 kg 11% mass saving

Laptop computer chassis

Original chassis Steel Mass 0.15 kg Lithium ion battery 0.09 kg

Updated chassis Epoxy and carbon fibers Mass 0.1 kg Lithium ion battery 0.09 kg 21% mass saving versus original design VS.

Multifunctional chassis Structural battery Mass 0.15 kg 38% mass saving versus original design 19% mass saving versus updated design

Carbon fibre lithiation expansion

Johnson, D. J., *J. Phys. D Appl. phyics* **20**, 286–291 (1987)

Shape-morphing composite

Actuation demonstrator

https://play.kth.se/media/Movie+S1/0_5ntruhqj

Vision

"A composite material that carries load, stores electrical energy, senses its own state, morphs and harvests energy"

You cannot do this alone! Polymers: Fibers: Mats Dan Johansson Zenkert **Structural** Battery Materialmaterials Mechanical modelling: properties: Janis Leif Asp Varna Electrochemistry:

Göran Lindbergh

CHALMERS

Questions?

The Economist

New York Times

Plastic composite supercapacitor

Insulating fibreglass layer

Materials world

CNBC www.energyopportunities.tv/Editorial-Features/Anenergy-storage-revolution