RAMSSES: WP18

novel cruise ship architecture 6 face cabin with lightweight self-supported floor

HUTCHINSON®

Pierrick DELAUNAY

AND INCOMENDATION AND INCOMENDATION OF ITS OFFICE ADDRESS OFFICADOFFICADOFFICADOF

CHANTIERS DE L'ATLANTIQUE

SUMMARY

- 1. Chantiers de l'Atlantique presentation
- 2. Work Package objective
- 3. Current cabin arrangement / RAMSSES concept
- 4. Floor material investigation
- 5. Ship behaviour by removing cabin deck
- 6. Local structure design
- 7. Fire integrity
- 8. Weight balance + opportunities for ship architecture
- 9. Demonstrator
- 10. Conclusion

FACTS & FIGURES

One single industrial site for all the processes

ORGANIZATION IN 3 BUSINESS UNITS

60,000 tons/year of steel processed
The largest erection dock in Europe
1,400 t of lifting capacity
1.8 billion € annual turnover

OUR CORE SKILLS

Our expertises

Design

Structure, fabrication and assembling

Cabins

Integration, coordination and trials

WP Goal :

- Design innovative cabins: 6 face with self-supported floor,
- and ship structure interfaces to generate a novel ship structure architecture.

Expected benefits:

CHANTIERS

DE L'ATLANTIQUE

reducing weight, size, costs, production times, maintenance and refurbishement effort. [...]

Weight reduction objective = - 400 kgs / cabin

- 1. 4 face cabin produced in factory,
- 2. Bay window installed at bloc / on board stage directly on hull,
- 3. Cabin installed on board by lift through breaches and rolled inside on steel deck.

RAMSSES CONCEPT

- 1. 6 face cabin with floor & bay window prefabricated in cabin factory,
- 2. Cabin installed at the final position from outside by moveable platform,
- 3. Plug & play networks connection,

No more steel deck under cabin => self supported floor for cabin

Component identified with higher potential in term of weight reduction by using composite or lightweight material

=> cabin floor

DESIGN CHOICES

Design studies :

- 1. Suitable material and design for floor,
- 2. Deck removing consequence on ship behaviour,
- 3. Local ship structure design,
- 4. Fire integrity.

Specifications for self-supported floor :

- as light as possible,
- design load from regulation = 468 kg/m²,
- maximum deflection from CdA comfort requirements,
- Fire requirements for floor from SOLAS = A15
 As floor is no more strongly fixed by welding, we need to achieve
 FRD60 (fire test with load on floor).

Zaltex from HUTCHINSON

 Zaltex is a material designed for thermal insulation in the cryogenic industry

- Zatex is a composite <u>and</u> a foam. Thus, it exhibits:
 - -Good mechanical properties
 - Low thermal conductivity

- An adaptable density (from 100 kg/m³ up to 1200 kg/m³)

 Zaltex can be proposed for applications that require mechanical strength and insulation @ a low density

Evopreg from COMPOSITES EVOLUTION

- Composites Evolution is a partner from RAMSSES WP10.
- Evopreg prepreg is :
- fire retardant,
- pre-impregnated composite materials based on a polyfufuryl alcohol bioresin (PFA).

FLOOR MATERIAL TESTS

Mechanical characterization of different configurations

Calculations done for Evopreg with 50mm thick balsa core 3 points test (ASTM D 790-81)

		Flexion module (Mpa)	flexural strength (Mna)	Sandwich Configuration	Failure mode	
Type3	Average	636,9	-2,12	Econreg face + core Balca	core shearing	
	Std deviation	13%	12%	Ecopieg lace + core baisa		
Type6	Average	154,5	-1,27	Zaitex sandwich with	race wrinking and core inter-	
Typeo	Std deviation	15%	5%	variable density	layer debonding	
Type4	Average	110,0	-0,75	Ecopreg face + core PET T90	face wrinkling and core	
	Std deviation	4%	3%	foam	shearing	
Type2	Average	130,7	-0,65	Ecopreg face + core Zaltex	face debonding and core	
	Std deviation	16%	3%	density 1.16	shearing	
Type5	Average	54,1	-0,54	Zaltex with homogeneous	face wrinkling and core layer	
	Std deviation	6%	11%	density	debonding	
Type1	Average	103,2	-0,45	Econreg face + core Zeltev	face wrinkling and core	
	Std deviation	14%	6%	Ecopreg face + core zaitex	shearing	

<u>Result</u> : **Ecopreg + balsa** is the most suitable combination for floor

Zaltex needs to be used with stiffeners

ZALTEX WITH STIFFENERS

Zaltex with steel stiffeners

Performances = OK but solution not suitable, too heavy.

2. Zaltex with carbon fiber stiffeners

- Performances OK,
- Good potential for weight reduction,
- Price ?

Production of 2 large samples with carbon fiber reinforced stiffeners for mechanical & fatigue tests

Dimensions = 1m * 2,69m (final cabin width)

EVOPREG FLOOR

Design & production of Evopreg + Balsa large samples

Design validation by Bureau Veritas calculation

Mechanical & fatigue tests performed on large panels (2,69m x 1m), ie final floor width Testing program done at IRT Jules Verne Angers for Evopreg & Zaltex

	2 points	1m ² distributed load	Total distributed load
Load application	Maximum deflection of 4,5mm under	Maximum deflection of 4,5mm under 150kg	No mechanical damage under 468daN/m²
	2x75kg pressure	pressure	
	CdA comfort requirement	CdA comfort requirement	Regulation requirement with acceleration
ERNE			

TEST RESULT

Evopreg + balsa floor is showing higher deflection compared to calculation

ULTIMATE & FATIGUE TEST

- Ultimate load > design load (468 kg/m²)
- Both material suitable for regulation

Evopreg = delamination failure Zaltex = propagation of local crack

400.000 cycles > floor cycle life

Only one test on fatigue Does not represent final result

New calculation performed with Evopreg to reach deflection criteria, Different cases studied : fiber orientation, additional stiffeners,...

Best result obtained by changing fiber orientation + using higher density balsa

Calculation on MSC Grandiosa by removing cabin deck on model

Similar ship behaviour with small increasing of displacement + 0,003m for flexion ; total flexion is 0,551m.

LOCAL STRUCTURE DESIGN

With RAMSSES architecture, local steel structure can be optimized and designed to only support cabin.

If considering linear contact with cabin floor, beam section has to be stronger to avoid torsion when loading only 1 cabin.

Solution found to light weight local steel structure = Cabin supported only by 4 points on transverse beam

CHANTIERS DE L'ATLANTIQUE

No floor solution with properties to be supported by only 4 points => cabin frame

CABIN FRAME

Design of cabin frame (ie container) to support floor with only few points (4) of contact with ship transverse beams

Cabin frame is also designed (wind pressure) & used to support :

- Bay window (blue),
- A0 panels (yellow).

For demonstrator, structure has been designed and calculated to be :

- As light as possible,
- Taken into account CdA industrial process.

Lumped masses

Structure should have eigen mode over 12 Hz to avoid excitations from engine.

Cabin behaviour is unknown, but calculation is showing potential issue.

Solution is known:

Increase beam height => +150 kg/cabin

Demonstrator produced with optimised steel structure :

- To measure real cabin behaviour,
- To try to validate the lightest structure

FIRE INTEGRITY

SOLAS requirement :

A15 between 2 welded steel decks,

RAMSSES design:

FRD60 – load bearing test

Small scale furnace test

performed with both material with similar result :

- Additional insulation under floor is needed,
- Confirmed by HDT measure done by Composites Evolution

Design choice to apply additional fire wool on cabin ceiling for process reason.

FIRE INTEGRITY

CHANTIERS DE L'ATLANTIQUE

FRD test still to conduct with Evopreg floor in 3rd quarter 2021 by RISE.

WEIGHT BALANCE + SHIP BENEFIT

weight (kg)	Zaltex floor + carbon fiber stiffeners	Ecopreg floor	Ecopreg + savings	reference ship	
Cabin	2020	2020	2020	2020	
Bay window + panels	216	216	216	216	
Balcony	193	193	193	229	
Steel ship structure	768	768	768	2039	
Balcony floor	69	69	69		
Cabin floor	352,28	461,39	461,39		
Cabin frame	165	165	165		
Insulation	100	100	100	0	
PU pads	1	1	1	0	
Patching	0	0	0	94	
Weight reduction (floor with integrated					
functions)			-289		
Total	3884	3993	3704	4496	
weight reduction were referred a chin	14%	11%	18%		
weight reduction versus reference ship	612	503	792		

Solution with best potential is **Evopreg floor**.

Composite material can offer to mold additional parts directly in the floor (bathroom floor, walls and furniture supports, ...) to optimise RAMSSES design.

Potential benefits to apply RAMSSES architecture on small cruise vessel (500 cabins):

- Weight reduction with same cabins quantity
 - ➡~ -0,5% of energy consumption
- more cabins for some weight / center of gravity
 +7% to +9% cabins
- Opportunities for new ship architectures

RAMSSES Demonstrator

2 cabins one above the other :

- Comfort measurements
- 1 prefabricated balcony with floor in aluminum profile :
- No benefit to share one floor for cabin and balcony

Validation of assembly concept

RAMSSES Demonstrator

NEXT STEPS & CONCLUSION DE L'ATLANTIQUE

Last project steps:

CHANTIERS

- Insitu measurements by IRT Jules Verne & CdA NVH department, -
- Industrialisation study to finalise, _
- Cost study to finalise, -
- LCPA study to update with final design, -
- FRD fire test to succeed.

Conclusion:

- Current results are showing great potential for this new architecture,
- Design can be easily adjusted to different material for floor.

RAMSSES project was a wonderful opportunity to validate and develop this concept.

There are still works to perform before offering this architecture to ship owner, and we will surely continue project after RAMSSES.