RAMSSES - Realisation and Demonstration of Advanced Material Solutions for Sustainable and Efficient Ships

E-LASS SEMINAR

Cutting down the structural weight for planing and semi-planing workboats.

Kristjan Tabri, MEC

E-LASS SEMINAR 17th of June 2021

Introduction

- Our WP focuses on the deckhouses of workboats (length range 15-45 m)
- **OBJECTIVE: Reduction of the assembly time** for panels for the superstructure and deckhouses of aluminum crafts by implementing light weight structures

- Reduce the weight (and COG) of the deckhouse up to 20%
- Decrease the time for assembly and insulation
- Reduce the deckhouse deformations during assembly

REQUIREMENTS

E-LASS SEMINAR 17th of June 2021

53 REFERRA

CURRENT SOLUTION

RAMSSES

- Current solution is based on single skin extruded aluminum panels
- Insulation of the panels is time consuming
- Welding of the panels results in weld distortions

PANEL SOLUTIONS STUDIED

E-LASS SEMINAR 17th of June 2021

SOLUTION BASED ON ALUMINIUM SANDWICH PANELS

CONCEPT SOLUTION BASED ON AL SANDWICH PANELS

Time and space saving from more efficient installation of insulation as flush surface is to be insulated

Faster assembly: mechanical "Clip"joint of panels: a solution, where only inner skin is welded and the outer skin is joined with a clip joint

AL SANDWICH: PRACTICAL ISSUES

- Cutting of the panels, preparation of corner connections etc.
 - New procedure for the yard
- Cutting under oblique angle might be an issue
- Friction stir welding capacity is required for full benefit

AL SANDWICH: CRITICAL POINTS

 Insulation of enclosed compartments Assuring airtightness - Condensed water/corrosion Noise and vibration damping • Core should be filled with (preferably) noncombustible insulation - Welding and cutting of the filled panels • Filling is problematic and would introduce

availability issues

 In that ship length range the deckhouse is typically made of 4 mm extruded AL panels

- To be weight competitive, this requires very small thicknesses for the double skins (max 2 mm)
- Local strength might become an issue (core filling could support the thin plates)
- Weight saving is hard to achieve with this plating thickness

SOLUTION BASED ON CONVENTIONAL SANDWICH PANELS

- Offers weight saving and flush final surface
- New production technology for the AL shipyard vs outsourcing
- Separate production hall and logistics
- Changes to the design procedures

SOLUTION BASED ON FIRE RESISTANT SANDWICH PANELS

Courtesy to PodComp

E-LASS SEMINAR 17th of June 2021

FIRE RESISTANT SANDWICH PANEL: DEVELOPERS

PODCOMP: WP leader, product design & demo producer, evaluation

RISE SICOMP: pre-trials, material selection and tuning of production process, acoustic design and testing

BALance: concept development, business scenario

Coventive Composites / Composites Evolution: developing and producing PFA prepregs

CETENA: acoustic design and testing

- To test the concept, a sun roof of a small passenger vessel was considered.
- Initial aim was to produce the whole sun roof for the actual vessel.

sunpanels hidden from view

E-LASS SEMINAR 17th of June 2021

SUN ROOF DESIGN USING FIRE RESISTANT PANELS

DEMONSTRATOR: PART OF THE SUN ROOF

DEMONSTRATOR DESIGN AND PRODUCTION

E-LASS SEMINAR 17th of June 2021

- Double skin AL panels are not reasonable for midsize ships where already small thicknesses are used for single skin panels
- Conventional composite sandwich panels offer lighter alternative
- Novel fire-resistant panels should be developed towards more suitable mechanical properties

			CONV.	FIRE.RES.	
VARIABLE			SANDWICH	SANDWICH	
	PANEL	AL PANEL	PANEL	PANEL	Unit
Neutral axis, NA	0.8	1.75	1.2		cm
Moment of inertia, I_k	24.22		29.78		cm ⁴
Sectional modulus, Z _{upper}	31.43	AT	24.82	Weight 🗸	cm³
Sectional modulus, Z _{lower}	7.06	t >6 mm	24.82	shear strength 个	cm³
Bending stiffness, k _{mm}	1,2E+02		115	Strength	N/mm
Mass per sqm	13,4	14.9	9.6	19.4	kg/m²
Mass per sqm w. fire insulation	17.0	18.5	13.4	19.4	kg/m²

*Includes fire resistant insulation.

RAMSSES - Realisation and Demonstration of Advanced Material Solutions for Sustainable and Efficient Ships

THANK YOU!

E-LASS SEMINAR 17th of June 2021

53 CETENA CENTRO PER GLI STUDI DI TECNICA NAVALE