Passion Knowledge Innovation

HARTEN

- WHELE

Maritime

Industry

Art in public space

Services and products:

- Pre-engineering (incl. weight calc.)
- Engineering (incl. FEA and calculation)
- Moulds
- Building the elements
- Installations of the elements

examples:

- > Topmasts
- Antenna masts
- Superstructures
- Bulwark/life raft doors and hatches
- Doors and hatches
- Furniture incl. hatches

including Mounting plates, Piping (cables) cable ducts, Prepared for installation of equipment

including hardware (turn key)

Products

- Industrial doors
- Escape hatches
- Multipurpose hatches
- Deckhatches
- Luxery doors

Standard configurable products

Composites:

- Light weight
- Freedom of shape
- Less maintenance
- Function-integration
- Less fairing

Trends

- Implementation new materials
- Saving fuel (costs)
- Less maintenance (total-cost-of-ownership)
- "cleaner" vessels
- Light weight unmanned vessels

steel>

The project:

Saving 10ton of weight in the superstructure for 70m superyacht Total of 830m2

Why composite?

Not possible to reach the requirement to save 10ton of weight with a alloy superstructure

Concerns (from yard and contractors of the yard)

- How to connect to the alloy construction
- What about fire resistance
- How to "deal" with class society
- How you are assured it will fit in the end

Phases during the project

- Pre-engineering
- Detail engineering
- Moulds
- Building and assembly
- Shipping
- Installation

 Identify requirements Define materials Demarcation list Risk analysis List and define stakeholders Pre-engineering report 	Finalize 3D model Calculations (weight, FEA, strength) 3D measurements Review drawings for class and client Work preparation	Mould build following 3D model (CNC) Critical parts checked by 3D measurement and templates on site	Project management (communication stakeholders) Built conform specs and 3D model Including •Mounting plates •Piping for cables or cable ducts
--	---	---	---

Production

Shipping

Robotization

3D printed mould (recycled material) Robot used for milling and drilling

Actual innovations:

Automatization of engineering

Fire resistance tests up to 60minutes

Composite grids

Experience from projects like this:

Quote of yard: "We are not desperate enough to use composite"

Important to find a way to convince yards to see composite as an option during design phase Discussions must be done in an earlier stage

Show cases needed

Wood>

composite

Contact information:

Jeroen van Deutekom

Randweg 22 8304 AS Emmeloord Netherlands

0031 527 685 048

jeroen@vabocomposites.com

www.vabocomposites.com

