

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement N^o 723360

Status i EU-projekten RAMSSES och Fibreship

Franz Evegren RISE Research Institutes of Sweden Safety & Transport Fire Safe Transport

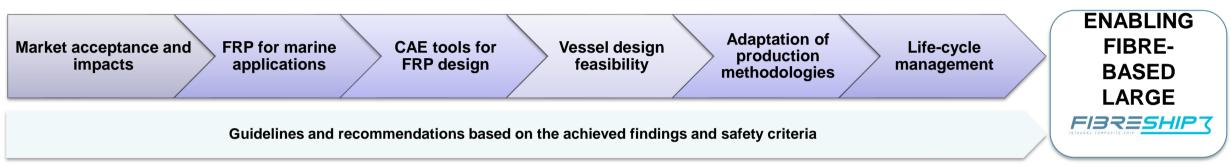
This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement N° 723360

FIBRESHIP PROJECT:

SUMMARY OF THE PROJECT AND RESULTS

Alfonso Jurado Head of R&D at TSI FIBRESHIP Coordinator alfonso.jurado@tsisl.es

One of the greatest challenges for the European Shipping and Shipbuilding Industry in terms of BLUE ECONOMY and WATERBORNE TRANSPORT.



2. BRIEF DESCRIPTION OF THE FIBRESHIP PROJECT

2. FIBRESHIP PROJECT DESCRIPTION

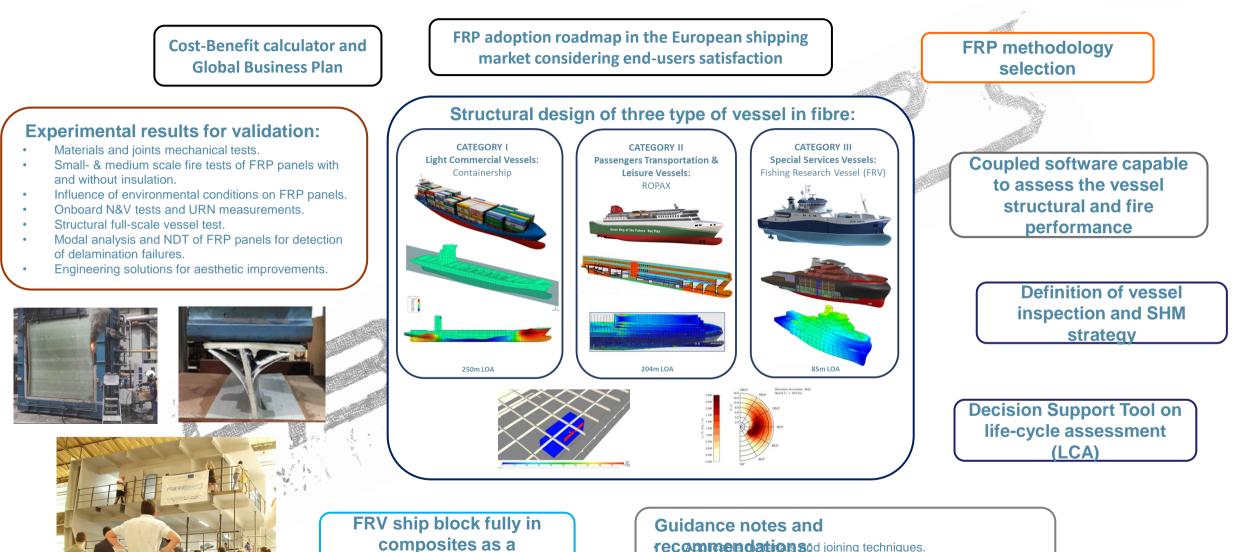
FIBRESHIP Project

• FIBRESHIP addresses the **feasibility** of using **FRP** technology in **large-length vessels** (greater than 50m/500GT), trying to overcome the identified technical challenges and promoting a change in the regulatory framework that enables the design, building, and operation of this sort of vessels.

Main particulars of FIBRESHIP:

- Grant Number: 723360
- Duration: 36 months (June2017-May2020)
- Project Budget / EU Contribution: €11M / €8,7M
- TRL: 7-9
- International collaboration among 18 partners of 11 European countries with a broad experience in different disciplines

FIBRESHIP - FINAL PROMOTIONAL VIDEO



4. SPECIFIC RESULTS OF THE PROJECT

4. SPECIFIC RESULTS – SUMMARY (1/6)

FIBRESHIP

demonstrator

recommendationsod joining techniques.

- Structural design based on structural and fire criteria. •
- Adoption of new production strategies and building techniques.

3D MODELLING STANDARD SCANTLING FOR STRUCTURAL DESIGN Demonstrator design for **Classification Society** Midship and construction **Rules** From Midship to a full Web-frame **3D ship structure** Scantling **Structural configuration FEM** Analysis definition 2nd stage Materials and laminates **Optimization stage** 3D FEM model definition 1st stage 0.27198 0.24172 0.2115 0.18129 0.15107 0.12086 0.090644 0.080429 0.030215 0 AUXLIARS DECK AUX STRINGER TSI 🕔 **Decks & Bulkheads Reinforcements & Spaces Beams** www.tsisl.es

4. SPECIFIC RESULTS – FRV Structural design (2/6)

FI375SHIP7

4. SPECIFIC RESULTS – Fibre-based vessels comparison (3/6)

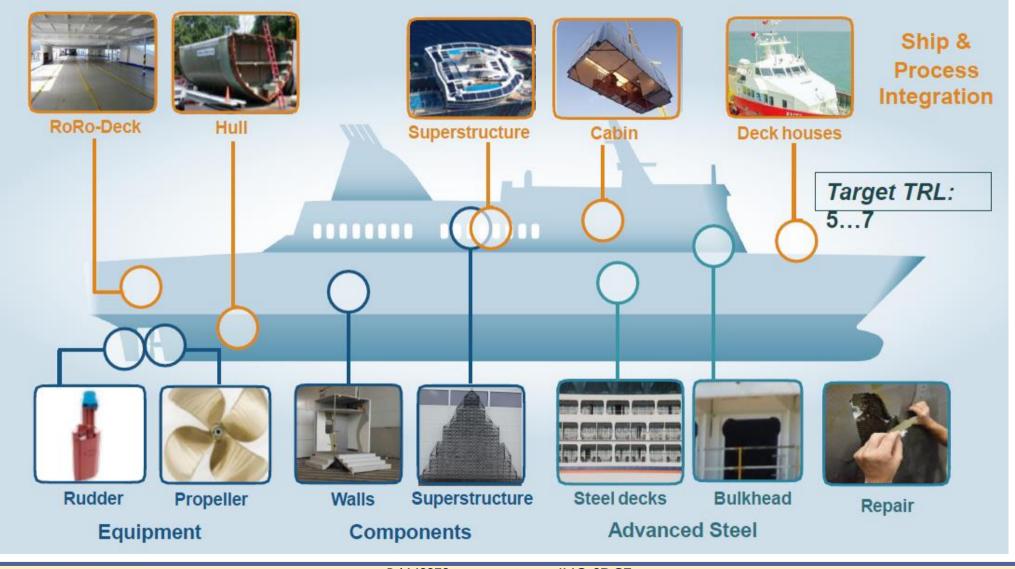
	FI	BRESHIP: Structural vessel design i	n FRP materials	
Vessel type		Containership	ROPAX	Fishing Research Vessel (FRV)
Vessel Category		Lightweight commercial vessels	Passenger transportation and leisure vessels	Special services vessels
Overall Length (m)		260.0	204	86,4
Length between PP (m)		244.8	185.4	79.9
Steel-based Structural Weight	(ton)	10952	8629	2252
Fibre-based Structural Weight w/o insulation (to		4675	4232	525
Fibre-based Structural Weight w insulation	(ton)	5925	5502	684
Average Composite Scantling	(mm)	35		32
		(Torsion box 100)	41	JZ
Structural Weight Reduction wrt the reference steel-based v	vessel	45,9%	36,2%	69,6%
Steel-based Lightship displacement	(ton)	16535	13051	3701
Fibre-based Lightship displacement	(ton)	11508	9924	2133
Overall Lightship Weight Reduction wrt a steel-based vessel		30,4%	24,0%	42,4%
Main conclusions		The FRP containership design fulfils all the requirements and reduces the stresses well below the acceptable limits. Only the maximum global deflection may be a limiting factor when considering extreme navigation conditions.	Local Roll-On/Roll-Off areas have been checked. Significant local failure modes due to Roll-on/Roll-off cargo have identified. More structural optimization is needed.	The FRV in composites fulfills all the structural requirements for all navigation conditions. It can be said that fibre-based vessels of up to 85 m length are feasible from the structural point of view.
		Fire safety improvement is the next challenge to overcome.	Fire safety improvement is the next challenge to overcome.	Fire safety improvement is the next challenge to overcome.

6. MAIN CHALLENGES FOR THE FUTURE

6. MAIN CHALLENGES FOR THE FUTURE: TOWARDS FIBRESHIP 2

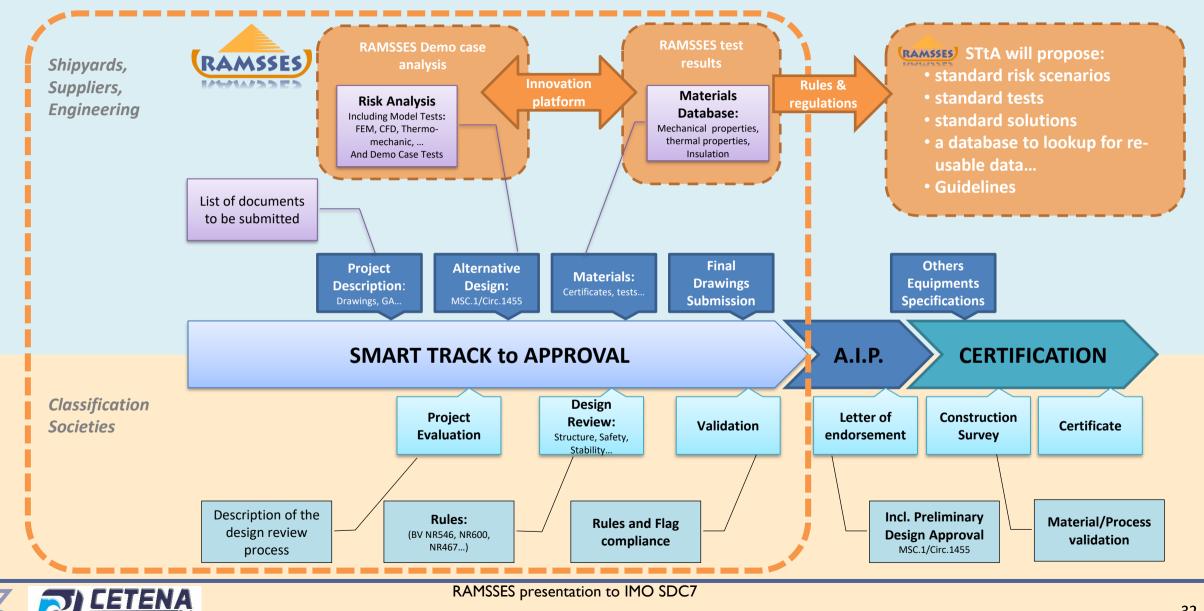
- 1. Further engagement of regulatory bodies for **evolving the current regulatory framework** to enable this technology.
- 2. Further characterization of FRP materials and development of composites with improved fire resistance properties to increase safety in vessels.
- 3. Further research on **computational simulation and assessment tools** to enhance the accuracy of the performance studies of the fibre-based vessels.
- 4. Research on **automation of modular construction techniques** and further research on **joining** techniques in order to improve production.
- 5. Application and development of **industry 4.0 tools** in European shipbuilding: vessel 4.0 and shipyard 4.0
- 6. Further research on LCA, recycling and waste management of composites assets.

Coordinator: CETENA (Italy) – Financial and Administrative CMT (Germany) – Technical and Dissemination


The project RAMSSES has received funding under the European Union's Horizon 2020 research and innovation programme under the grant agreement No 723246. The information contained herein reflects the views only of the author(s), and the European Union cannot

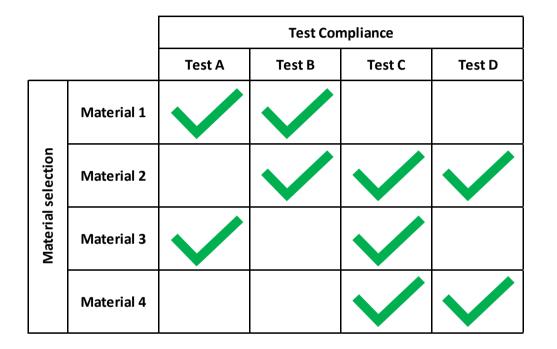
be held responsible for any use which may be made of the information contained herein.

RAMSSES – Demostrators



Smart Track to Approval

CENTRO PER GLI STUI



Finding pre-approved solutions

• Suggestion to use selection tables to find existing solutions

		Standard fire risk scenarios							
		Scenario A	Scenario B	Scenario C	Scenario D				
Pre-approved solutions	Solution 1				\checkmark				
	Solution 2								
	Solution 3	\checkmark							
	Solution 4	\checkmark							

- Quickly known what is already possible, and what is not
- More time available to assess safety of new elements

RAMSSES:

- Demonstrated advantages of composite materials in shipbuilding,
- Proved the **ability** to build large structure in composite,
- Proposed new approach for fire division rating
- Ask Member States to:
 - support using our results in evaluation of MSC.I/Circ.I574

