RAMSSES - Realisation and Demonstration of Advanced Material Solutions for Sustainable and Efficient Ships

E-Lass September 16th, 2020 Scaling up Composites Technology

Work Package 17 Custom Made Hull for Offshore Vessel Marcel Elenbaas Damen Schelde Naval Shipbuilding

Coming from Damen Shipyards Antalya standard in composites up to 25 meter...

11 meter

... Up to 85 meter within RAMSSES

Why would we go for composites?

Key Performance Indicators: Weight reduction, less fuel, less CO2 and....

Advanced functions

Crew Supplier/Offshore Patrol Reduced engine capacity

Offshore Supply Improved Stability

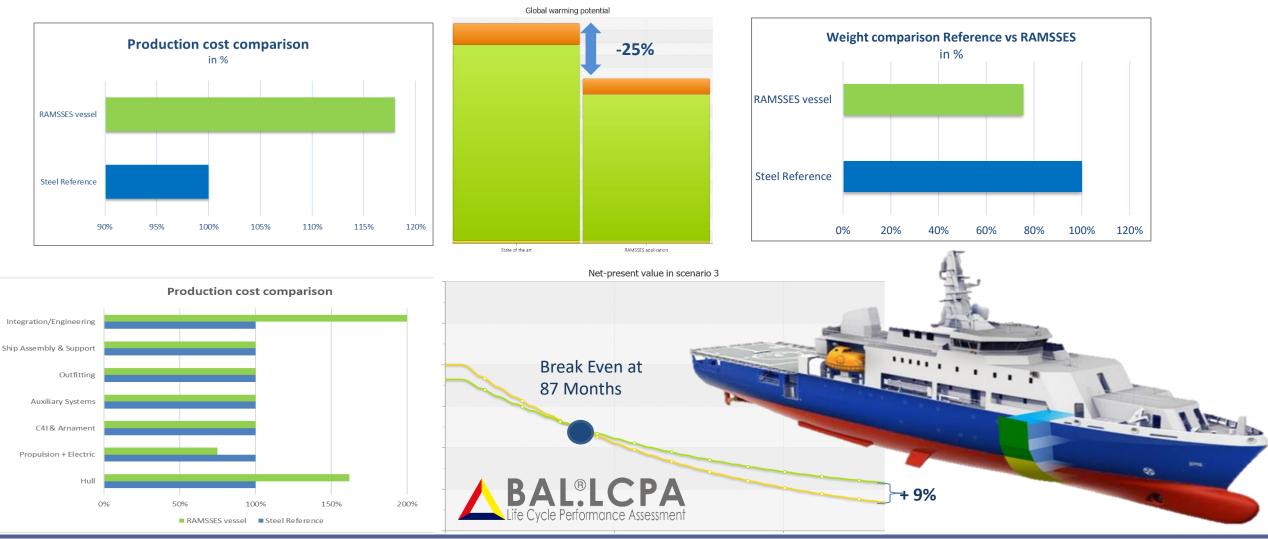
Yachts	Yacht Support	Fishery	Fast Ferries	
Advanced Aesthetics	No fairing	Integrated cargo holds	Client's Business Case	
DAMEN	Custom Mad	E-Lass September 16 th , 2020 RAMSSES Work Package 17 le Hull for Offshore Vessel, M.C.Elenbaas, DSNS		

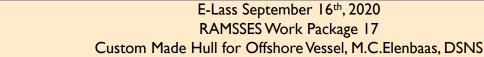
3

Why would we go for composites?

Key Performance Indicators: Weight reduction, less fuel, less CO2 and....

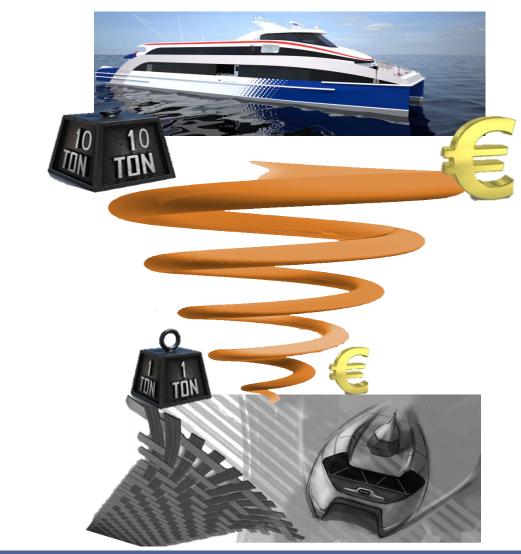
Fishery Integrated cargo holds Fast Ferries Client's Business Case




A Starting Point

Based on public available figures, in collaboration with, Balance LCPA

To be confirmed by production...


From naval ship to yacht in a single hull

Reaching the next level of standardization!

12 tons structural weight reduction

10 tons propulsion reduction
5 tons systems reduction
40 cm more slender hulls
27 tons total reduction


20% fuel reduction

3-5 years to break even

Just Imagine, the effect of leadtime reduction...

Reduced Production time

Reduced Costs of facilities Reduced Insurance Costs Reduced Manpower Reduced Overhead Shorter time to market

More ships sold per year

If Smart Track to Approval

Hence:

RAMSSES: Scaling up the technology for SOLAS Classed vessels

- Capability of development;
- Affordability by industrialization;
- Validation and acceptance;

building up trust for yard and clients production at steel yard conditions by testing and risk based design

RAMSSES: Featuring the whole development cycle in a single project!

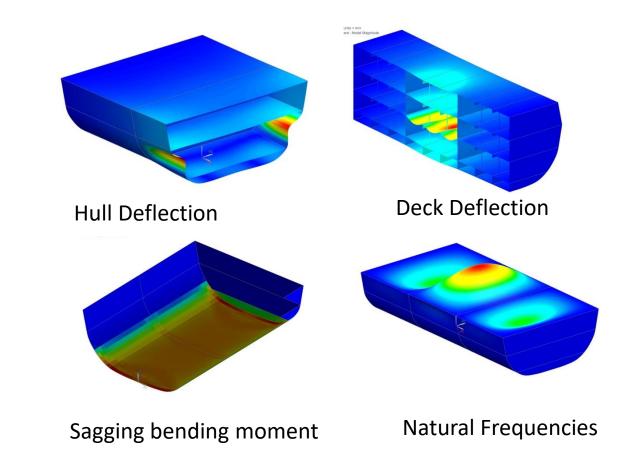
- I. Requirements for 85 meters by DSNS & Bureau Veritas
- 2. Design performed by DSGo & evaluated by Bureau Veritas
- 3. Novel resin developed by Evonik
- 4. Infusion process by Airborne and Infracore
- 5. 6 meter hull shell infused by Airborne,
- 6. 6 meter infusion achieved by Infracore
- 7. Joints developed by Infracore and tested by TNO
- 8. Hazld performed by DSNS, NMTF, Bureau Veritas, Rise
- 9. Assembly at steel yard by Infracore, DSNS, BNS & CTP
- **10. Validation testing** by TNO witnessed by Bureau Veritas

RAMSSES

NEW:

- Introduce Hogging and Sagging loads
- Assembly at Steel Shipyard conditions
- Flooding loads on joints
- Comfortable safety margines
- Risk Based Design for Fire Safety
- Helideck with emergency landing loads

Design

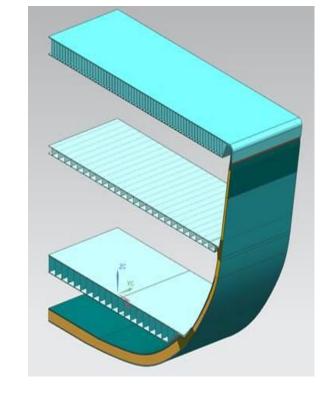


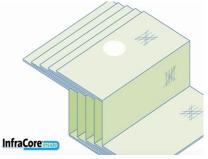
Basic Design by DAMEN Gorinchem

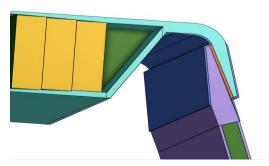
- Prepared for Production by Airborne and Infracore
- Joints Design Developed by Infracore

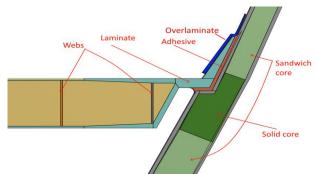
Featuring:

- 240 mm thick monolitich co-infused keel section
- 200 mm recyclable PET core sandwich bottom
- Prefab monolithic inserts around joints
- Shear ties around joints
- All for one shot infusion


Design, with novel Infracore Technology


Allowing for production at steel yard


- Comfortable safety margin on joints,
- No need for extensive fatigue assessment


Featuring:

- Pillar less
- Optimising space
- Dealing with tolerances
- Low cost and/or fire retardant core
- With optional systems inside panels
- Vertical flooding loads on joints
- Fit for assembly at steel yard
- Shape-locked joints
- Etc..

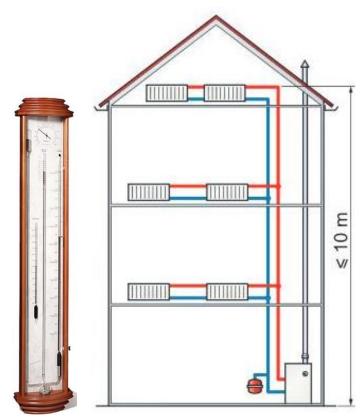


Novel resin, low viscocity for large scale infusion

ALBIDUR® VE hull 3.2 developed by Evonik featuring:

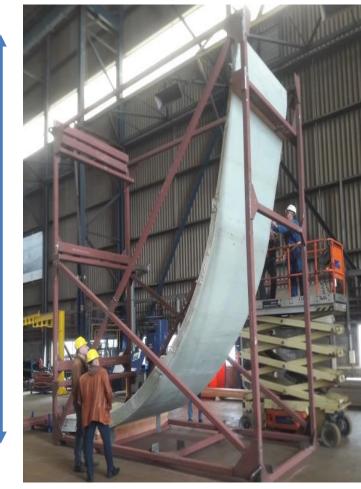
- Low viscosity for large scale infusion
- No toughener particles lagging behind in infusion
- 7% elongation at beak for fracture toughness
- 8 hours infusion
- 6 meter height hull shell infusion
- 240 mm monolithic keel section without exothermic burn

Core shell particle representation



Simple physics shows 10% pressure drop at every meter infusion height

6 meter height results in resin infusion at 40 % vacuum.



Damen Waterbus 2.3 meter

Water 10 meter

RAMSSES WP 17 hull 6 meter

6 meter vertical infusion achieved by Airborne Realising hull shell in single shot with novel Evonik's resin

Featuring:

- Recyclable PET core by Armacell
- 240 mm co-infused monolithic keel section
- Monolithic prefab insert parts
- Shear ties

https://www.youtube.com/watch?v=_a9B8zpqbY0&feature=youtu.be

6 meter vertical infusion also achieved by Infracore

- Demonstrated even up to 9.8 meter
- Also realised with new Evonik's resin
- Deck and bulkhead sections produced by Infracore

Trade off Traditional Sandwich vs. Infracore technology, theory

WEIGHT

based on flat panel with equivalent strength

MATERIAL COST

based on flat panel with equivalent strength

LABOR COST

based on qualitative assessment

FAMILIAR TO CLIENT

& TRACK RECORD

Face sheet Lightweight core material Sandwich structure Face sheet

AIRBORNE

higher density foam

- foam resin uptake slightly smaller
- expensive core materials, specially for higher densities and mechanical properties
- Appears simple, but much effort in proper placement of layers, especially in vertical mould
- Sandwich technology is well-۲ know to the maritime industry

InfraCore

INFRACORE

- lower density foam
- foam resin uptake slightly larger
- monolithic webs
- low density PU foam + monolithic webs is up to 80% cheaper than sandwich foam core
- more foam block assembly
- more fibre reinforcement cutting
- simple block laying process
- Track record in the infrastructure industry (Bridges and lock gates)
- Helideck on ship, rudder flap...

Trade off Traditional Sandwich vs. Infracore technology, in practice

Building block approach Applicability at steel yard conditions Integration of shear ties Integrated fire safety

Low Scrap rate Non structural foam Optional fire retardant foam Integrated infusion channels Short Leadtime Short Infusion time

Assembly of demonstrator at DSNS Steel yard

Steel yard conditions; it's no clean room

Featuring:

- Limited temperature control
- Dealing with tolerances
- Fitting parts from two suppliers
- No lamination at the yard
- Only three Infracore experts needed

Approved procedure by Bureau Veritas

- Qualification procedure under control by Bureau Veritas and Lloyd's Register
- Validated for application at steel yard conditions
- Demonstrating expected lifetime of 25 years service
- Extensive testing by a.o. Cambridge, TU Gent, TU Delft

Scigrip methacrylate adhesive introduced by DAMEN and BNS

Featuring:

- Ability for injection, instead of applying uncontrolled putty
- Low sensitivity to voids; no cracking as epoxies
- Toughness tested for extreme conditions including shock
- Gap filling allowing for building tolerances
- Class approved system

CTF

In collaboration with Infracore, DSNS, BNS industrial and CT Platon

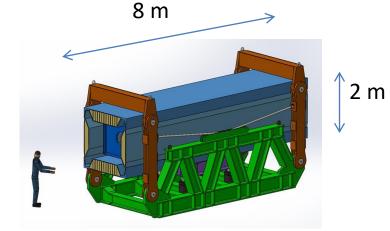
Sealing with Scigrip by BNS& ICC

Injecting Scigrip by CT Platon

Customised adhesive injection system by CT Platon

Assembly of demonstrator at DSNS Steel yard

• Video Assembly



Full scale testing up beyond actual ship bending loads

Representing hogging and sagging loads on actual ship For validation of design and production

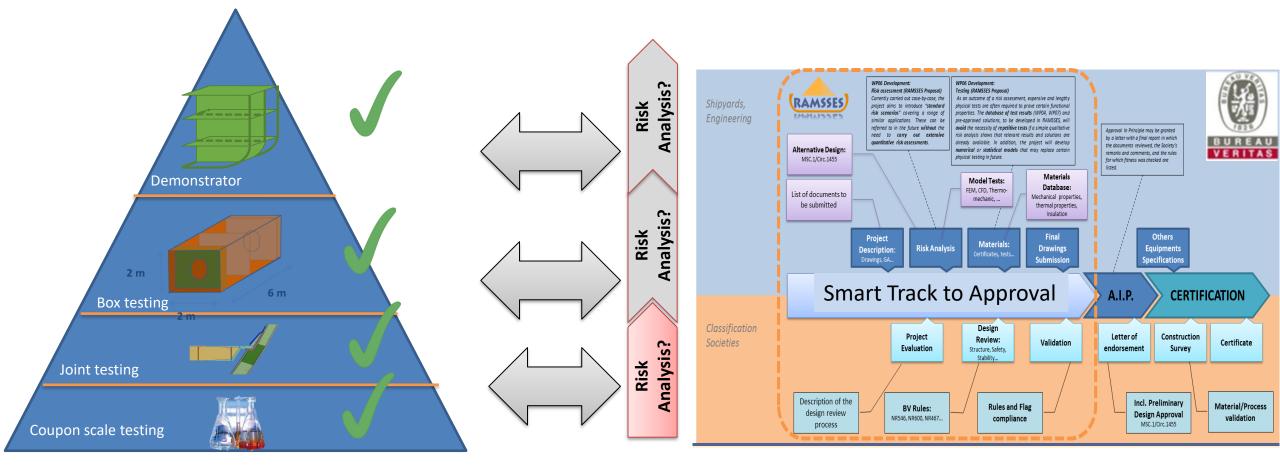
Featuring

- Full scale helideck panels by Infracore
- Full scale bottom panels by Airborne
- Full scale joints designed for large safety margin
- Assessment performed by TNO and Bureau Veritas
- 4x 500 tons hydraulic cylinders

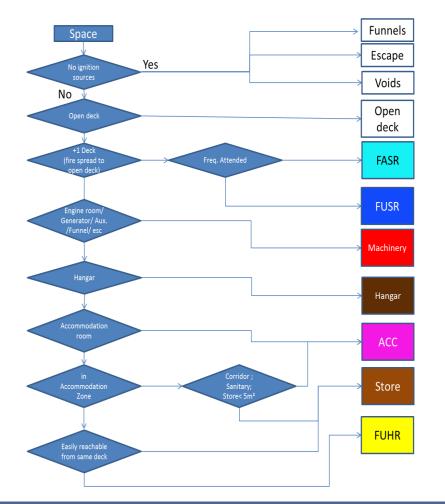
RAMSSES

Dedicated Testrig delevoped by TNO

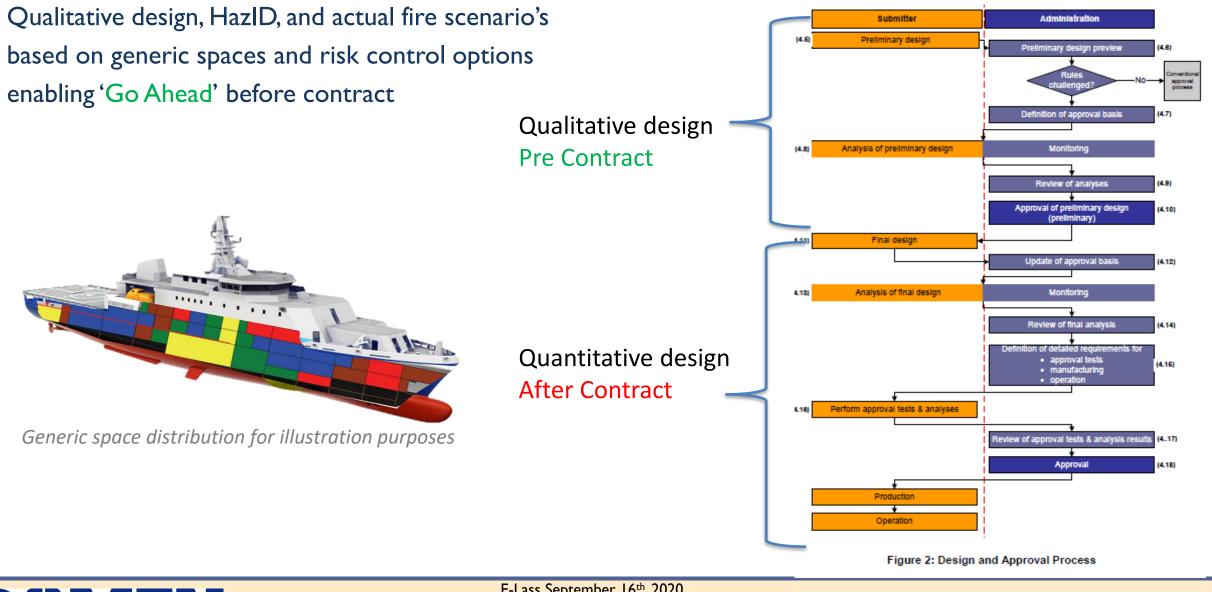
- Produced by DSNS with 100 m high grade steel
- Box panels produced bij Airborne and Infracore
- Assembled at Infracore with same procedure as demonstrator.
- All ready for testing at TNO



Completing the development cycle up to approval in principle


Risk based design full building block approach from coupon to full production scale In collaboration with Smart Track to Approval, WP 6 with NMTF, RISE, and Bureau Veritas

Challenging Risk Based Design, beyond SOLAS guideline for 'non structural elements' of 85 meter hull with BV, RISE, NMTF and DSNS


BHD Insulation	Control Stations	Corridors	Accommodation spaces	Stairways	Service Spaces (low risk)	Machinery spaces (A)	Other machinery spaces	Cargo spaces	Service Spaces (High risk)	Open decks	RoRO
Control Stations	10	10 10	10 10	60*** 60	10 10	H60 10	60 10	10 10	60 10	30	10 30
Corridors		10	10 10	60*** 60	10 10	H60 10	60 10	10 10	60 10	30 *	10 10
Accommodation spaces			10	60*** 60	10 10	H60 10	60 10	10 10	60 10	30 *	10 10
Stairways				60***	60 60***	H60 60***	60 60***	60 60***	60 60***	* 60***	10 60***
Service Spaces (low risk)					10	H60 10	60 10	10	10 60	30 *	10 10
Machinery spaces (A)						H60	60 H60	10 H60	60 H60	H60 *	10 H60
Other machinery spaces							60	60 10	60 60	60 *	10 60
Cargo spaces								10	60 10	30 *	10 10
Service Spaces (High risk									60	60 *	10 60
Open decks										*	* 30
RoRO											10

*Low flame spread surface in areas with direct risk of fire ignition or fire spread ** If no ignition sources: No protection required, otherwise FRD -10

*** Either non loadbearing A-class or FRD-60 insulation

Created in Collaboration, Thank you all!

RAMSSES receives funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement n° 723246.

The information contained herein reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained herein.

