

Koen van Valkenhoef Structural Engineer

Siebert Frieling Lead Engineer

What does Ampelmann Operations provide

Safe and efficient offshore access

What does Ampelmann Operations provide

Ampelmann offshore access system

Opportunities and risks of composites

Weight optimization

Possible future product portfolio expansion

Failure mechanisms

Challenges of working with composites

So many choices...

Composite development roadmap

Composite T-Boom

- Proof-of-concept
- Gain knowledge and experience on:
 - Engineering
 - Fabrication
 - Performance

Composite Slideway

- Proof mass reduction capabilities
- Certification
- Offshore experience with composite product in operation

R&D Composites

- Design certification
- Structural health monitoring

Composite Gangway

- Lightweight system
- Certified line product

2019 > 2020 > 2021

Ampelmann offshore access system

Three main components built in the same mold

Side panels and deck adhesively bonded

Composite T-Boom in reality

Assembly Testing

Comparable to steel but lighter

Composite development roadmap

Composite T-Boom

- Proof-of-concept
- Gain knowledge and experience on:
 - Engineering
 - Fabrication
 - Performance

Composite Slideway

- Proof mass reduction capabilities
- Certification
- Offshore experience with composite product in operation

R&D Composites

- Design certification
- Structural health monitoring

Composite Gangway

- Lightweight system
- · Certified line product

2019 > 2020 > 202

Innovation required in order to

Reduce OPEX

Weight reduction

Certification

/essels

Offshore cranes

Offshore access systems ???

Offshore wind turbines DNVGL-ST₇0376

DNV-GL

Edition August 2017

From steel to composite design validation

No. of independent engineering constants

2

σ _a =	Fσ σ _e =	$= \sqrt{\sigma_{xx}^2 + \sigma_{yy}^2 - \sigma_{xx}^2}$	$\sigma_{yy} + 3\tau_0^2 \le 1, 1\sigma_a$				
Allowable stress design Table 42.6 $M_{Table 42.6 M_{Table 42.6 M_{Tabl$							
F =	stress factor	Load case	Stress factor, F				
~	failura etroce	2	0.75				

ES L	Steel
ilure	Yielding
Fai	Buckling
Ε	Deflection

 σ_{o} = von Mises equivalent stress

No. of independent engineering constants

21

γ_F	$\gamma_{Sd}.S_k \leq \frac{R_k}{\gamma_M \sqrt{R_M}}$	$\max_{j=1}^{N} \left[\gamma_F^j S_k^j + \sum_{i \neq j} \gamma_F^i S_k^i . \Psi^i \right]$ Resistance
γ_F γ_{Sd} S_k R_k γ_M γ_{Rd}	partial load effect factor	design ffect Load effect model factor Characteristic value of load effect Partial load effect factor for load effect Combination factor for load effect .

	E S	Composite		
	mechanism	Buckling	Deflection	
	ပ္ ပ	Fibre failure	Interfiber failure	
	Ĕ	Resin failure	Facesheet tearing	
	Failure	Core failure	Fatigue	
•	≣	Stress rupture	Creep	
L	Ĭ	Matrix cracking	Impact	

Unpredictable failures

Young's Modulus = Rise = Slope

Desired equivalent safety & reliability level drives research on SHM area

Aimed goal of Structural Health Monitoring

Weight optimization

Structure Quality

What would an appropriate SHM technology be for offshore access applications?

Composite development roadmap

Composite T-Boom

- Proof-of-concept
- Gain knowledge and experience on:
 - Engineering
 - Fabrication
 - Performance

Composite Slideway

- Proof mass reduction capabilities
- Certification
- Offshore experience with composite product in operation

R&D Composites

- Design certification
- Structural health

Composite Gangway

- Lightweight system
- Certified line product

2019 > 2020 > 2021

Offshore experience with Slideway

Composite development roadmap

Composite T-Boom

- Proof-of-concept
- Gain knowledge and experience on:
 - Engineering
 - Fabrication
 - Performance

Composite Slideway

- Proof mass reduction capabilities
- Certified demonstator
- Offshore experience with composite product in operation

Composite Gangway

- Lightweight system
- Certified line product

R&D Composites

- Design certification
- Structural health monitoring

Share experience for a composite future in the maritime and offshore industry

Product development

Composite design

Structural health monitoring

Siebert Frieling

Lead Engineer siebert.frieling@ampelmann.nl +31 (0)6 21597182

Koen van Valkenhoef

Structural Engineer
koen.vanvalkenhoef@ampelmann.nl
+31 (0)6 16965268

Dimitrios Bekas

R&D Composite Engineer dimitrios.bekas@ampelmann.nl +31 (0)6 89921530

Ampelmann Operations B.V.

Oostsingel 209, 2612 HL Delft, The Netherlands +31 (0)20 2400 121

www.ampelmann.nl

