cDynamics

The development and approval process of the first GRP car ferry in Norway

Knut Inge Edvardsen E-LASS Bremen 30-01-2020

MARINE || COMPOSITES || RENEWABLES || SUBSEA

Barmen ferry project

- April 2018: 10 year contract awarded from the Norwegian road administration (Statens Vegvesen) to shipowner Vidar Hop Skyssbåter
- Building contract awarded to Maaloy shipyard

- Composite shipyard in north-west between Bergen and Ålesund
- 20 employees

- Family owned shipowner in Sogn in western Norway
- 13 vessels
- 29 employees

Sub-contractors:

Main data

- Name: «Barmen»
- Build: 23
- Design: Easyform / Sea Technology
- Length: 29.98
- Width: 11.00
- Tonnage: 239
- Propulsjon: All electric
- Material: GRP Sandwich

Why composites?

Specific strength

Material	Estimated relative	
	weight difference	
Carbon fiber sandwich	30%	
Glass fiber sandwich	40%	
Aluminium	50%	
Steel	100%	

Source: DNV GL HSLC - Panel calculations by cDynamics

Parameter	Steel Ferry	GRP Composite	Cost effect	Comment
	(Estimated)	ferry		
		(Barmen ferry)		
Hull material	Steel hull weight	GRP Sandwich hull	+10 MNOK	Building cost hull
(CAPEX)	125 tonne	weight 50 tonne		
Hull material			-6.2 MNOK	Maintenance cost
(OPEX)				reduction: -0.5
				MNOK pr year
Battery pack	250 kWh	150 kWh	-0.25 MNOK	Smaller battery pack
(CAPEX)				
Propulsion	2 x 250 kW	2 x 150 kW	-0.2 MNOK	Smaller engine
(CAPEX)	(2 x 4000 kg)	(2 x 2300 kg)		
Lifetime energy	1167 MWh x 20 =	700 MWh x 20 = 14	-5.8 MNOK	Energy consumption
consumption	23 TWh	TWh		reduction: -0.47
1),2),6)				MNOK pr year
Total cost			-2.45 MNOK	
reduction				

Assumptions:

1) Steel ferry total operational displacement: 200 t

2) GRP ferry total operational displacement: 120 t

3) Battery pack and thruster capacity increases linearly by weight (simplification)

4) Energy cost: 1 NOK/kWh

5) Present value interest rate: 5%

6) 20 years, 3000h/year, 70% of installed effect, 10% power loss during charging

...and it looks nice too!

Laws and regulations

- The ferry is all-electric, constructed in GRP material and will carry dangerous goods
- Not covered by existing laws and regulations

-> A risk based design approch acc. to MSC.Circ 1455 was therefore required by Norwegian Maritime Authorities (NMA)

MSC.1/Circ.1455 24 June 2013 GUIDELINES FOR THE APPROVAL OF ALTERNATIVES AND EQUIVALENTS AS PROVIDED FOR IN VARIOUS IMO INSTRUMENTS

MSC.Circ 1455 Process

- Preliminary design phase
 - Alternative design description Hazid
 - Test and analysis plans
- Review by authorities
 - -> Approval basis established
- Final design phase
 - Perform tasks defined in approval basis (tests and engineering analysis)
- Review by authorities
 - -> Approval (or not..)

Overall goal: The alternative solution shall have an equivalent safety level as prescriptive design!

Preliminary design scope

- Process to be performed with approved expertise
- Hazid
- Identify consequence for all types of ADR goods
 - Class 1 (Explosives)
 - Class 2 (Gases),
 - Class 3 (Flammable liquids)
 - Class 4 (Flammable solids)
 - Class 5 (Oxidizing agents and Organic Peroxides)
 - Class 6 (Toxic and Infectious Substances)
 - Class 7 (Radioactive Materials)
 - Class 8 (Corrosive Substances)
 - Class 9 (Miscellaneous dangerous goods)
- Preliminary design report
 - Functional description of alternative design
 - Hazid report
 - Risk assessment plan
 - Testing and analysis plan

Final design scope

- Preliminary design accepted. A simplified process was conducted from this point based on NMA review.
- Perform approval tests and engineering analysis phase
- Final report
 - Test reports
 - Final risk analysis covering passive and active fire protection describing all measures in-line with and beyond prescriptive requirements.

Specification and design drivers

- 10 cars or 1 truck
- All-electric
- Max axle load 13 tonne
- Shall carry all types of ADR dangerous goods
- 3 m zone around dangerous goods to doors, hatches, ventilation etc.

Approval basis – design rules

- Norwegian regulations
- Dispension sought for use of alternative design standard for fire safety.
- Fire safety acc. to IMO HSC2000 Ch.7

Discipline	Design basis
Structural design	Forskrift 01. juli 2014 nr. 1072 om bygging av skip
	§4 (Ships in domestic traffic): The construction requirements of a renowned classification society shall be used.
	Structural design acc. to DNV GL HSLC rules. The vessel is not classed.
Subdivisions and stability	Forskrift 1. juli 2014 nr. 1072 om bygging av skip
Machinery and electrical installations	Forskrift 1. juli 2014 nr. 1072 om bygging av skip
Battery systems	DNV GL RU-SHIP Pt.6 Ch.2 (2018)
Fire safety	Forskrift 01. juli 2014 nr. 1099 om brannsikring på skip
	Dispensation from the regulation acc. to §19 to use HSC2000 rules.

Barmen ferry - Fire safety design

Summary

- Composite is a good choice for small and medium size car ferries
- Less maintanace cost, less power consumption and full design freedom are the selling arguments
- But... Some work to be done in the approval process.

Next project: Cost-effective Fire-Resisting material

- Budget 1.15 million € (50% financed)
- Direct spin-off from the Barmen ferry project
- Funded by Norwegian Research council
- Partners:
 - Sea Technology/Maaloy verft Shipyard
 - Libra plast Manufacturar of ship doors and hatches
 - cDynamics Project management and consultancy
 - RISE Develop new fire models and perform fire tests
- The outcome of the project will be new solutions for composite panel and door constructions, complying to the International code for application of fire test procedures (FTP Code).

CDynamics