

Technology Transfer Group: Infrastructure Structural health monitoring in thick-walled FRP structures

Bremen, 29-01-2020

E-LASS

fshore

StrengthBond

Technology Transfer Group: Infrastructure Structural health monitoring in thick-walled FRP structures

- Inspection techniques
 - Non-destructive evaluation (NDE)
 - Structural health monitoring (SHM)
 - Sensor mapping

Non-destructive evaluation (NDE)

SSC-463

INSPECTION TECHNQIUES FOR MARINE COMPOSITE CONSTRUCTION AND NDE

This document has been approved For public release and sale; its Distribution is unlimited

SHIP STRUCTURE COMMITTEE 2012

Non-destructive evaluation (NDE)

E-LASS

ffshore

StrengthBond

- Description of potential defects
- Non-destructive evaluation techniques

- Wind Turbine Blades
 - Test panels & Case studies
 - Summary & conclusions

E-LASS

Composites

FiberCore

fshore

StrengthBond

Technology Transfer Group: Infrastructure

- Bonded joint failures (adhesive, cohesive, mixed)
- Air bubbles
- Blisters
- Core crushing
- Core shear failure
- Crazing
- Delaminations

- Fibre failure
- Kissing bond
- Impact damage
- Matrix cracking
- Moisture ingress
- Ply/fibre waviness
- Resin rich/poor area

Non-destructive evaluation (NDE)

Non-destructive evaluation techniques

- Visual inspection
- Tap testing
- Ultrasonic inspection
- X-radiography
- Eddy current
- Thermography
- Moisture meters

E-LASS

fshore

StrengthBond

Technology Transfer Group: Infrastructure

- Non-destructive evaluation techniques
 - Bond testers
 - Laser shearography
 - Modal methods

- Structural Integrity and Damage Evaluation
 - Routine (SIDER)
- Acoustic emission

Technology Transfer Group: Infrastructure

Non-destructive evaluation (NDE)

 Aerospace Damage & Repair Inspection Procedures

Non-destructive evaluation (NDE)

E-LASS

fshore

StrengthBond

Composites

FiberCo

Aerospace Damage & Repair Inspection Procedures

-10-	Test procedure	Outer skin Bonding	Inner Skin Bonding	Fluid	Estimated Insp. Time	Flaw size	Training	Remarks – Availability - Advantages – Constrains
	Tap Test / Woodpecker				4h 3h	25 mm 50 mm	No	• High human factor!
FIT	ELCH				2x4 h (2 Operators)	100mm	No / Introduction	Simple, reliable, qualified Development for improvement: OPTO-ELCH
eld inspe	BONDMASTER	no procedure	nio groosduse		2x8h (2 Operators)	25mm	UT II + Special course	Portable, reliable Competing with UT
ction tec	Ultrasonic				48h	25mm	UT II +	Procedure available Equipment common Not for large areas
hnology	X-Ray				4-8h	1 cell	RTI	Everywhere available Safety?
	Thermography				4-h	1-3 cells	IRT Level I limited	Relatively Cheap Small and highly portable Easy to use
Close to FIT	OptoELCH				2x4 h (2 Operators)	25mm	Introduction	Simple, reliable, compact, cheap
	Shearography	missiers Inclusion			16h	25mm	SH II No course avail.	Expensive/bulky No quantitative deformation indication Missing inspector certification scheme

Figure 69. Comparison of the effectiveness of NDE techniques for honeycomb sandwich structures by Airbus [Bisle 2010]

E-LASS

StrengthBond

Technology Transfer Group: Infrastructure

- Wind turbine blades
 - Visual
 - Ultrasonics
 - Shearography
 - SHM (FBG)

E-LASS

Technology Transfer Group: Infrastructure

Non-destructive evaluation (NDE)

Test panels & Case studies

	Defect	Laser Shearography	Ultrasonic Inspection	Infrared Thermography	Digital Tap Hammer
ion	Min. Size Detected	2 inches	2 inches	3 inches	3 inches
minat	Max. Depth Detected	1-2 plies	1 ply	2 – 3 plies	2 – 3 plies
Dela	Overall Effectiveness	good esp. for kissing bonds	can't detect kissing bonds	can't detect kissing bonds	can't detect kissing bonds
SS	Min. Size Detected	2 inches	4 inches	2 inches	4 inches
Ingre	Max. Depth Detected	skin/core interface	skin/core interface	skin/core interface	skin/core interface
Water	Overall Effectiveness	good	use higher frequency transducer	very good	fair
age	Min. Size Detected	1 inch	2 inches	1 inch	3 inches
t Dam	Max. Depth Detected	skin/core interface	1-2 plies	skin/core interface	skin/core interface
Impac	Overall Effectiveness	very good	good	good	only edge delaminations found
	Min. Size Detected	2 inches	2 inches	1 inch	defect not
/oid	Max. Depth Detected	¹ /4 inch	¹ / ₂ inch	¾ inch	detected
-	Overall Effectiveness	fair with thick laminates	good for uniform laminates	very good	not effective
Sy	stem limitations:	Requires good reflective surface – not good with matt finish black parts or clear gel coat; not good with thick or highly curved parts	Requires good calibration sample and uniform laminate; small probe area	Known good laminate required for baseline data; defect must produce a thermal gradient	Only effective with larger defects
	Equipment cost:	≈ \$100,000	≈ \$40,000	≈ \$10,000	≈ \$1,500

Non-destructive evaluation (NDE): conclusion

- By far the best NDE tool for marine composites is still the human eye. However, visual inspection cannot reveal the extent of damage with certainty.
- The initial assessment of NDE technologies revealed laser shearography, thermography, ultrasonic testing and digital tap hammers to be the most promising for marine composites inspection.

Non-destructive evaluation (NDE): conclusion

from NDE Methods for Infrastructure Composites

Defects	Acoustic Emission	Acoustic Impact Testing	Eddy Current Testing	Modal Analysis	Optical Methods (Shearography)	Penetrant Testing	Radiographic Testing	Rapid Load Testing	Strain Measurement Techniques (Optical Fibers)	Thermographic Testing	Ultrasonics	Visual Testing
Delamination	C	A	0	?	A	9	A	?	C	A	A	C
Fiber Breakage	В	C	B	?	A	C	A	?	0	?	?	in an
Fiber Waviness	-0	C	B	0	A.	0	A	?	C	?	?	C
Matrix Cracking	В	0	0	0	?	C	A	. 0.	0	0	D	0
Moisture	Ð	0	?	?	?	0	C	?	0	С	C	0
Porosity	0	0	0	0	?	0	A	0	0	?	?	0
Resin Thickness Irregularities	0	0	0	0	?	0	A	0.	C	?	?	0
Voids	0	C	0	?	A	Ð	A	?	0	C	C	0

A =	High (allows localization or accurate sizing)
B =	Generally Detectable (works generally well)
C =	Limited Detectability (may be used under certain conditions only)
0=	Not applicable (will not detect the defect)

E-LASS

fshore

StrengthBond

CompositesN

FiberCore

euro

Technology Transfer Group: Infrastructure

Non-destructive evaluation (NDE)

Terahertz inspection

 Reflected THz signal. 'Dark blue' areas indicate the presence of the defects and 'yellow areas' indicate the '0' defect zone. Reflective tape markers used as reference points are clearly visible at coordinates (230,250) and (370,250).

Structural health monitoring (SHM)

- Acoustic emission
 - See previous report

RAMSSES

FiberCore

- Fibre Bragg Gratings
 - See presentation by

E-LASS Vigo 2019

Sensor mapping

AquaSmartXL

Remotely Controlled Aquatic Drones

- Flexible, easy and quick to deploy platform
- High quality sensors and data capturing
- Easy accessibility to difficult and dangerous to reach places
- Observation and inspection of assets as well as their surroundings

Sensor mapping

https://www.youtube.com/watch?time_continue=113&v=fWz4b2FxgkM &feature=emb_logo

INSPECT ASSETS

We operate where other technologies cannot, either because these technologies are too dangerous, too expensive or simply not practical to use

MAINTENANCE

We deliver a basis for Predictive Maintenance and Reliability Centred Maintenance. Repeatable measurements and modeling allows for tracking changes over time

DATA DRIVEN

Robust data processing chain covering acquisition, network communication, storage, processing, integration, visualisation and distribution risk mitigation

Sensor mapping

Xtend Technology: visual inspection, NDT & sample drilling

Did You know that Xtend Technology already have inspected several bridges both in Norway and Germany . We Will soon Also include AI function and offer services where we are going from fly and see to fly, see & work. Meaning our Drone will perform NDT and drilling like sampling of concrete test samples and other

InfraCoremside

InfraCore Company

Contact

- Postal address: Oostdijk 25, 3077 CP Rotterdam/NL .
- Office address: Marconistraat 16, 3029 AK Rotterdam /NL •
- Email: info@infracore-company.com •
- Internet: www.infracore-company.com •

Phone: 0031-624628868