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• Introduction

• Digital Operation Rail Systems

• Machine learning on fault diagnosis of bogie components

• Data-driven damper condition estimation

• Data processing and data-driven model generation

• Results

• Summary and outlook
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Digital Operation Rail Systems

▪ Asset Management Tower at Industry / Operator

▪ System Lab at Virtual Vehicle

Infrastructure (HW & SW)

Decision Basis for Maintenance Systems
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Rail wheels profile

▪ Wheel wear detection and classification based on on-board inertial sensors 

▪ Knowledge of 'significant' scenarios and operating conditions (distribution) is 

crucial to develop a successful classifier

▪ Simulation data

Bogie components

▪ Fault diagnosis of dampers with on-board acoustic sensors

▪ Test measured data

Data-driven fault diagnosis – Use cases 

Liang Ling et al. 2014 

Shahidi et al. 2015
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Our way to approach the problem ...

Machine Learning

Data-driven fault diagnosis - Overview
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Wheel profiles

Sensors

Loading
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Pre-
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wornnew
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System knowledge
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algorithm
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Machine Learning framework for this use-case

MBD simulations

Data-driven fault diagnosis - Machine Learning

• Performance metrics

• → Accuracy
Metrics

• Feature extraction

• Feature selection
Features

• Classifier selection

• Optimization algorithm
Algorithm

• Performance evaluation

• Classifier validation
Performance

Worn profile

(positive)

New profile

(negative)

Pred. pos.

"Worn profile"
True positive (TP) False positive (FP)

Pred. neg.

"New profile"
False negative (FN) True negative (TN)

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
(𝑻𝑵 + 𝑻𝑷)

𝑻𝑵 + 𝑻𝑷 + (𝑭𝑷 + 𝑭𝑵)

Training and testing data

Changing operation 

condition ranges

Friction

Nominal 

Gauge

Wheel 

profile

Rail 

profile

Loading

Track 

geometry

Cant

Vehicle 

speed

Curve 

radius
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Feature extraction from all sensor

▪ Time domain:

• max, std, kurtosis, skewness, peak-to-peak, ...

▪ Frequency domain:

• spectral peak, energy in frequency bins, ...

▪ Time-frequency domain: 

• Spectral kurtosis, STFT, EMD, WVD,…

Feature selection

▪ Goal: Find a minimum number of features for a robust classification

Machine Learning - Feature extraction & selection

Extraction

az_BG1_std

az_BG1_skw

ω_UF_DFT_B56

ay_BG1_max

𝒕

ay,BG1

time domain
𝒇

DFT( ay,BG1 )

frequency domain

ay_BG1_DFT_B34
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Classification of worn and new profile 

▪ Parameter study (running behaviour) based on MBD simulations

• System parameter

• Operating conditions

▪ Expected influence of different wheel-profile conditions

▪ High influence of 'other operating' conditions

▪ Separation seems easier in curved tracks

▪ 'Physics' explain the observations

▪ Machine Learning (ML) algorithms verify the hypothesis

• two features from lateral acceleration of the bogie and carbody

were enough to separate new from worn profile

• results were used to develop wheel wear degradation models 

for predictive maintenance

Monitoring railway wheels

 Knowledge of operating conditions where higher lateral movement lead to higher 

axle box accelerations is essential for Machine Learning classification results!

→ Acc. ~ 97% 
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Main goal:

• Feasibility study for condition monitoring of bogie suspension dampers with on-board acoustic sensors

Secondary objectives:

• Find signal features that contain information from faulty behaviour

• Find features to classify a fault independently of fault location and train operating condition 

• Find the best operation conditions to isolate each fault

• Validate and verify robustness of the methodology and explore its possibilities on fault diagnostics

Monitoring bogie suspension dampers - Objectives
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Acoustic vs inertial sensors in train CBM

• Structure components (beams, masses, dampers, springs, junctions) act as signal filters.

• Locating the sensors close to the components exposes it to higher fatigue loads 

• Fault acoustic emissions (AE) can be detected before structural vibrations are detectable 

with inertial sensors → Potential failure (P) vs functional failure (F)

• “Like a stone” in a car tire, you don´t feel the acceleration difference when driving but you 

can ear it if you drive slow with the window open

Monitoring bogie suspension dampers - Sensors

Chase Sasser 2017
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Damper condition estimation:

• Data acquisition

• Data preprocessing

• Data cleaning

• Signals synchronization

• Track segmentation

• Observation samples into a 

data structure

• Fault detection isolation 

(FDI)

• Data available check

• Feature generation

• Feature selection

• Fault classification

Data-driven damper condition estimation - Methodology

Operating 

condition

Signals check
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Feature selection 

Fault classification

Feature generation

Damper condition estimation

Track section 

segmentation

Pre-processing
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data
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Speed
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Data-driven modelAcquisition

GPS
Observations in 

each segment

Dimensional reduction

Carbody

Secondary dampers

Primary dampers
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Feature generation from stationary and non-stationary vibration signals

• Time domain features: e.g. max, peak-peak, median, std, crest factor, skewness, kurtosis, crest factor

• Frequency domain features: e.g. FFT (magnitude and phase), PSD, spectral centroid, spectral spread, 

spectral bandwidth

• Time-frequency domain features 

• Short-time Fourier Transform (spectrogram), Mel Frequency Cepstral Coefficients (MFCC)

• Winer-Ville distribution (WVD)

• Empirical model decomposition (EMD) 

▪ Hilbert–Huang transform

▪ Wavelets

• Discrete wavelet transform (DWT)

▪ Hybrid approach:

• Features from model-based and 

data-driven

Data-driven models' generation – Feature generation methods

Weizhong Yan et al. 2008

Feature selection 

Fault classification

Feature generation

FDI

Data available check

Dimensional reduction
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Sensors on bogie side frame

• Classification performance is highly influenced by the 

level of excitation

• Features filtering aerodynamic noise increased 

classification performance considerably

• In straight track sections all faults were successfully 

classified using just 2 features

• Secondary vertical damper removed (SVD00) is easier 

to classify in straight and transition track sections

Results – Faulty damper classification

Data-driven condition monitoring and fault diagnosis of vehicle components with on-board sensors

Feature selection 

Fault classification

Feature generation

FDI

Data available check

Dimensional reduction
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Ship structural problems:

• Corrosion and fatigue cracking are the most pervasive types experienced in ship structures

Objective:

• Reduce welding and operation costs through predictive maintenance (dry-docking is expensive)

Methods:

• Acoustic Emissions method has been successfully used to inspect large offshore structural integrity 

• Data-driven approach:

▪ Training models with measured data from onboard sensors like: AE sensors, accelerometers, microphones, temperature, 

strain, humidity and gas sensors

▪ Sensitivity analysis to find most important features to characterize structural health condition

▪ Performing anomaly detection and fault diagnosis using machine learning methods

▪ Prognostics fitting degradation models

• Model-based and hybrid approaches:

▪ Generate vibroacoustic models to monitor welded joints with high stress and validate with measurements

▪ Train data-driven models with results from vibroacoustic

How could this methodology be applied on ships SHM?
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Analysis of qualitative and quantitative influence to the structural integrity

• External loads, material characters, component shape, surface condition, corrosion severity, existing cracks, static 

and dynamics stress load

Analysis of Non-Destructive Testing signal processing 

• Pre-processing

• Feature generation / selection

• Pattern recognition / classification 

• Prognostics

Damage monitoring 

• Detection

• Localization

• Assessment

• Life prediction

Estimation of structural damages of ship hull

AiKuo Lee et al. 2014Baccar 2015

LIGHT STRUCTURES SENSFIB
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Summary

• Digital Operation Rail System has successfully applied system knowledge and machine learning on: 

• Wheel wear prognostics

• Suspension dampers fault diagnosis

• The feasibility study of monitoring bogie dampers with data-driven models using acoustic sensors 

has been validated with two measurement campaigns

Outlook

▪ Data combination from different sensors (accelerometers and microphones)

▪ Environment operating condition detection

▪ Component condition estimation through regression (supervised learning)

▪ Development of on-board prognosis algorithms for damper degradation predictions

▪ Unsupervised learning from monitored in-service trains 

Summary & Outlook
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Mel Frequency Cepstral Coefficients 

(MFCC)

• Widely used in automatic speech 

recognition systems

• Keeps only relevant features, discards 

other sounds that carries Information like 

background noise, etc

• Triangle filter banks are spaced according 

to the mel frequency scale

• Inverse Discrete Cosine Transformation 

(DCT) is used to decorrelate the outputs 

and reduce dimensionality

Data processing steps for data-driven models generation

Feature selection and
Dimensional reduction

Fault classification

Feature generation

Damper condition 
estimation

Data available check

Input audio 

signal

Pre-emphasis

&

Windowing

FFT

Mel filter banks

Log of filter bank 

energies

DCT

Keep 13 MFCCs 

(amplitudes of 

spectrum)

e.g. 40 filters banks 
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Cross-validation

• K-fold training dataset  israndomly split 

into k folds without replacement, 

where k−1 folds are used for the 

model training and one fold is used for 

testing. This procedure is repeated k 

times and performance estimates.

• Stratified k-fold cross-validation 

yield better bias and variance 

estimates, especially in cases of 

unequal class proportions 

Supervised learning flow

Sebastian Raschka 2015


