

Enabling future vehicle technologies

Condition monitoring and fault diagnosis of vehicle components with on-board sensors

www.v2c2.at

Félix Sorribes Palmer Senior Researcher Email: felix.sorribespalmer@v2c2.at Bremen | 29th January 2020

vehicle

Irtual

Outline

Introduction

- Digital Operation Rail Systems
- Machine learning on fault diagnosis of bogie components
- Data-driven damper condition estimation
- Data processing and data-driven model generation
- Results
- Summary and outlook

Digital Operation Rail Systems

Decision Basis for Maintenance Systems

Data-driven condition monitoring and fault diagnosis of vehicle components with on-board sensors

Simulation data

Rail wheels profile

Bogie components

Fault diagnosis of dampers with on-board acoustic sensors

Wheel wear detection and classification based on on-board inertial sensors

Test measured data

Data-driven condition monitoring and fault diagnosis of vehicle components with on-board sensors

150

Wheel Profiles

Our way to approach the problem ...

Machine Learning framework for this use-case

Machine Learning - Feature extraction & selection

Feature extraction from all sensor

- Time domain:
 - max, std, kurtosis, skewness, peak-to-peak, ...
- Frequency domain:
 - spectral peak, energy in frequency bins, ...
- Time-frequency domain:
 - Spectral kurtosis, STFT, EMD, WVD,...

Feature selection

vehicle

virtual 🌔

Classification of worn and new profile

- Parameter study (running behaviour) based on MBD simulations
 - System parameter
 - Operating conditions
- Expected influence of different wheel-profile conditions
- High influence of 'other operating' conditions
- Separation seems easier in curved tracks
- 'Physics' explain the observations
- Machine Learning (ML) algorithms verify the hypothesis
 - two features from lateral acceleration of the bogie and carbody were enough to separate new from worn profile
 - results were used to develop wheel wear degradation models for predictive maintenance

⇒ Knowledge of operating conditions where higher lateral movement lead to higher axle box accelerations is essential for Machine Learning classification results!

Main goal:

• Feasibility study for condition monitoring of bogie suspension dampers with on-board acoustic sensors

Secondary objectives:

- Find signal features that contain information from faulty behaviour
- Find features to classify a fault independently of fault location and train operating condition
- Find the best operation conditions to isolate each fault
- Validate and verify robustness of the methodology and explore its possibilities on fault diagnostics

Acoustic vs inertial sensors in train CBM

- Structure components (beams, masses, dampers, springs, junctions) act as signal filters.
- Locating the sensors close to the components exposes it to higher fatigue loads
- Fault acoustic emissions (AE) can be detected before structural vibrations are detectable with inertial sensors → Potential failure (P) vs functional failure (F)
- "Like a stone" in a car tire, you don't feel the acceleration difference when driving but you
 can ear it if you drive slow with the window open

Damper condition estimation:

- Data acquisition
- Data preprocessing
 - Data cleaning
 - Signals synchronization
 - Track segmentation
 - Observation samples into a data structure
- Fault detection isolation (FDI)
 - Data available check
 - Feature generation
 - Feature selection
 - Fault classification

Feature generation from stationary and non-stationary vibration signals

- **Time domain features**: e.g. max, peak-peak, median, std, crest factor, skewness, kurtosis, crest factor
- **Frequency domain features**: e.g. FFT (magnitude and phase), PSD, spectral centroid, spectral spread, spectral bandwidth
- **Time-frequency domain features**
 - Short-time Fourier Transform (spectrogram), Mel Frequency Cepstral Coefficients (**MFCC**)

2020.01.29-30 / Félix Sorribes Palmer

FDI

Sensors on bogie side frame

- Classification performance is highly influenced by the level of excitation
- Features filtering aerodynamic noise increased classification performance considerably
- In straight track sections all faults were successfully classified using just 2 features
- Secondary vertical damper removed (SVD00) is easier to classify in straight and transition track sections

Ship structural problems:

• Corrosion and fatigue cracking are the most pervasive types experienced in ship structures

Objective:

• Reduce welding and operation costs through predictive maintenance (dry-docking is expensive)

Methods:

• Acoustic Emissions method has been successfully used to inspect large offshore structural integrity

• Data-driven approach:

- Training models with measured data from onboard sensors like: AE sensors, accelerometers, microphones, temperature, strain, humidity and gas sensors
- Sensitivity analysis to find most important features to characterize structural health condition
- Performing anomaly detection and fault diagnosis using machine learning methods
- Prognostics fitting degradation models
- Model-based and hybrid approaches:
 - Generate vibroacoustic models to monitor welded joints with high stress and validate with measurements
 - Train data-driven models with results from vibroacoustic

Analysis of qualitative and quantitative influence to the structural integrity

 External loads, material characters, component shape, surface condition, corrosion severity, existing cracks, static and dynamics stress load

Analysis of Non-Destructive Testing signal processing

- Pre-processing
- Feature generation / selection
- Pattern recognition / classification
- Prognostics

Damage monitoring

- Detection
- Localization
- Assessment
- Life prediction

LIGHT STRUCTURES SENSFIB

 Table 5.3: Support Vector Machine classification results of KDE-based patterns and the associated damage mechanisms

	Class 1	Class 2	Class 3	Class 4
Detection rate [%]	85.24	79.72	94.69	86.81
AE event	C3	C4	C2	C1
Damage	Fiber breakage	Matrix cracking	Debonding.	Delamination

Baccar 2015

virtual 🛟 vehicle

AiKuo Lee et al. 2014

Summary

- Digital Operation Rail System has successfully applied system knowledge and machine learning on:
 - Wheel wear prognostics
 - Suspension dampers fault diagnosis
- The feasibility study of monitoring bogie dampers with data-driven models using acoustic sensors has been validated with two measurement campaigns

Outlook

- Data combination from different sensors (accelerometers and microphones)
- Environment operating condition detection
- Component condition estimation through regression (supervised learning)
- Development of on-board prognosis algorithms for damper degradation predictions
- Unsupervised learning from monitored in-service trains

Enabling future vehicle technologies

Questions & Discussion

Félix Sorribes Palmer
Senior Researcher
☎: +43 316 8739075
⊠: : felix.sorribespalmer@v2c2.at
Bremen | 29th January 2020

www.v2c2.at

Bundesministerium
 Verkehr, Innovation
 und Technologie
 Wirtschaftsstandort

VIRTUAL VEHICLE Research Center is funded within the COMET – Competence Centers for Excellent Technologies – programme by the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Federal Ministry for Digital and Economic Affairs (BMDW), the Austrian Research Promotion Agency (FFG), the province of Styria and the Styrian Business Promotion Agency (SFG). The COMET programme is administrated by FFG.

Mel Frequency Cepstral Coefficients (MFCC)

- Widely used in automatic speech recognition systems
- Keeps only relevant features, discards other sounds that carries Information like background noise, etc
- Triangle filter banks are spaced according to the mel frequency scale
- Inverse Discrete Cosine Transformation (DCT) is used to decorrelate the outputs and reduce dimensionality

2019-09-30 / Félix Sorribes Palmer

Supervised learning flow

Cross-validation

- K-fold training dataset israndomly split into k folds without replacement, where k-1 folds are used for the model training and one fold is used for testing. This procedure is repeated k times and performance estimates.
- Stratified k-fold cross-validation yield better bias and variance estimates, especially in cases of unequal class proportions

Sebastian Raschka 2015