

STEEL TO COMPOSITES STRUCTURAL BONDING MEASUREMENT IN LIGHTWEIGHT MARINE TRANSPORT APPLICATIONS

E LASS VIGO 2019 GREGOIRE BEAUDUIN

(Hybrid) Bonding overview

FE top-von-Mises-stress

-3.000e+07

2.25e+7

1.5e+7

=7.5e+6

-0.000e+00

- Qualify Project
- SHM approach
- Strain FE SIMULATION

ΝZ

Х

- Reliability Analysis
- Com&Sens

WHY BONDING?

- Assembly of a wide variety of substrates
 - Metal/metal, metal/composite, metal/glass...
- Cold solution
 - No thermal deformation, no thermal affection
 - Intervention at late construction stage
- **Cost effective** joining technic
- Easy, simple
 - Be careful, can be dangerous
- Efficient: **Strong resistance**
- **Reduction** of weigt, noise and vibration & components

Surface preparation

•External aggression

Design

• Environmental conditions

ADHESIVES IN INDUSTRY

ADHESIVES IN MARINE

• Will this joint be reliable after twenty years of exposure to the harsh marine environment?

- Is it strong and tough enough?
- How can the properties of an adhesive joint be optimized?
- What types of adhesive joint designs are best to withstand specific loading and service conditions?
- Can we accurately model the response of an adhesive joint?

ENABLING QUALIFICATION OF HYBRID STRUCTURES FOR LIGHTWEIGHT AND SAFE MARITIME TRANSPORT

2 Seas Mers Zeeën

European Regional Development Fund

Enabling Qualification of Hybrid Structures for Lightweight and Safe Maritime Transport.

QUALIFY will deliver the knowhow and guidelines for the uptake of hybrid marine structures (metal/composite).

- Evaluate the **long term** structural **performance** of the adhesively bonded joint under representative environmental conditions
- Develop a **certification procedure** for adhesively bonded hybrid joints representative for marine structures
- Develop a reliable inspection and maintenance protocol for adhesively bonded hybrid joints

WP 2 MONITORTING : SHM OBJECTIVE

Establishing a structural health management methodology for in-situ monitoring of adhesively bonded bi-material joints to enable decision making protocols aiming to shift the current Full-scale structure schedule based maintenance scheme to a Components and subcomponents

condition based maintenance paradigm.

Structural details

Test coupons

SHM APPROACH

• Test approach via FEM simulation

- Effect of debonding on different levels (glue/steel, composite/steel interface or within the glue)
- \rightarrow Use strain transfer from boat to superstructure and vice versa
- Minimum Size of detectable debond/crack

SHM approach 2 steps (2 different techniques)

- Integrity monitoring on sea \rightarrow detecting hot spots and size of defect
- Harbour inspection \rightarrow detailed size of deffect

MONITORING TECHNIQUES

OFFLINE TECHNIQUES

Ultrasonic

Thermography

Crack damage in a composite

CT scan

DIC

MONITORING TECHNIQUES

ONLINE TECHNIQUES

^CPRELIMINARY ANALYSIS

#96

#108

- 2 load cases analyzed at fore end of superstructure
- Length of disconnection :

0 mm	Londonsos	Frame 90	Frame 108
600 mm	Luau Cases	VBM (kN.m)	VBM (kN.m)
900 mm	Case "Acrest" (moment)	Design VBM #90 hogging	Design VBM #108 hoggin
1200 mm	Case "Acrest" (shear aft)	73.7 % of Design VBM hogging	90.1 % of Design VBM hogging
1900 1111	Case "Acrest" (shear fore)	71.2 % of Design VBM hogging	72 % of Desig VBM hogging
	Case "Atrough"	Design VBM	Design VBM

(moment)

#90 sagging

& SIMULATIONS DONE ON CFRP AND STEEL

ANALYSIS ON STEEL

About 100 mm

About 300 mm

ANALYSIS ON COMPOSITES

- At two heights:
 - About 100 mm
 - Clear change in strain values
 - + and -300με
 - About 300 mm
 - Small change in strain values

• + and -100με

Case A+

Case A-

FBG SENSING POINTS POSITION

& CONCLUSIONS

- Further Finite element simulations are needed
- Possibility to detect defects/disbonds by looking at the strains on the composite side
- If we have every 30 cm a sensor a potential defect of 15 cm can be detected
- Necessity to know the loading condition, wave direction to do active classification of loading conditions

		Wind speed rpm (<i>m/s</i>)		Pitch (<i>d</i>	angle <i>eg</i>)	16 14		
		Min.	Max.	Min.	Max.	Min.	Max.	12
	1:Pitch : >80	n/A	n/A	n/A	n/A	80	100	
	2:Pitch : ±80	0	20	n/A	n/A	70	80	10
	3:Pitch : ± 20	n/A	n/A	n/A	n/A	19.5	20.5	
	4:RPM : <10	n/A	n/A	2.5	9.8	n/A	n/A	
	5:RPM : ±10	n/A	n/A	9.8	10.2	n/A	n/A	
	6:RPM : <16	n/A	n/A	10.2	15.9	n/A	n/A	* 1
	7:RPM: ±16	n/A	n/A	15.9	17	n/A	n/A	2 2
	8:Cut-Out	20	n/A	n/A	n/A	70	80	
						,		0 5 10 15 20 25
								Wind Speed (m/s)

Example Different loading conditions for a wind turbine (Courtesy 24Sea)

LOAD MONITORING CONCEPT

FBG SENSORS IMPLEMENTATION

- ONLINE/OFFLINE
- APPLICABILITY:
 - Glue fibres on boat-hull, superstructure (accessibility to structure needed, from outside)
 - Multiple fibres can be used with multiple sensors,
 - Measurement frequency high enough to detect dynamic effects
- REPAIRABILITY:
 - Only when not embedded in the bonded joint
 - Renew/repair sensor is possible

FEASIBILITY OF INSTALLATION

Flat sensor strip

Protection of environment

Switch to round GFRP rod

Stand alone read-out unit

- Measurement
- 4G

RELIABILITY ANALYSIS

- Unprotected steel samples with optical & electrical strain gages
- Optical sensors and glue have survived the salt spray
 - Spectrum can still be read completely
- Corrosion got between strain sensor and steel, so most likely no longer measuring strain (As expected, to be verified)
- Corrosion prevention required for sensors glued steel
- CFRP samples with same sensors now in salt spray chamber at TUD
 - Much better results expected since no corrosion under adhesive

FRONT RUNNER IN FIBER OPTIC SENSING

JUNE 2019

SERVICES ADDING VALUE BY SENSING

STRUCTURAL MONITORING

DEVELOPMENT PARTNER

ENGINEERING > PRODUCTION > INSTALLATION > COMMISSIONING > DATA MANAGEMENT

TECHNOLOGY IMPLEMENTATION

WE DELIVER SMART STRUCTURES DATA

Collect real data of structural integrity

Shift to predictive maintenance

Avoid blind spots between periodic inspections

ASSET MANAGEMENT

Reduce TCO

Use data for diagnostics and statistics

Predict LIFETIME

Automate alerts of critical faults

Non Intrusive

In-situ embedded strain, temperature sensing

Sensor Network

Multiplexing of sensing points

Strainmapping

Reliable & Accurate measurements

PROCES CONTROL

Cure & flow analysis

Composites process control

ROBUST.

VERSATILE.

COST EFFECTIVE.

Flat type (composite tape, ~5mm width)
Round type (composite rod, ~0.5mm – 2mm diam)

Customized sensor configuration

- Variable lengths (~1m 100m or more)
- Variable amount of sensing points (~max 20/line)
- Custom prededined sensor locations (min 1cm spacing)

DESIGNED FOR HARSH ENVIRONMENTS

EMBEDDED OR SURFACE MOUNTED COMPOSITES BASED SENSORS

- Fast installation time
- Variable & unlimited in length
- Geometric freedom (round, square, L-shape)
- Extensive multiplexed sensor network
- Chemical resistant (sea water, oil,...)
- Reproducible UV glueing

& REFERENCES

FIBRE OPTIC SENSING MONITORING

GEOTEXTILE SLOPE MONITORING

COMPOSITES WATERLOCK MONITORING

SURFACE MOUNTED HARSH ENVIRONMENTS MONITORING

& REFERENCES

FIBRE OPTIC SENSING MONITORING

SUPER YACHT CARBON RUDDER

OFFSHORE FOUNDATIONS

EDGE CONNECTION

SMART COMPOSITES

Repairability & Connection ot embedded optical fibre in machined composites structures

Patent EP16180924.9

Fiber optic edge connection solution for embedded optical fibres in composite materials

non-intrusive connection featuring low optical-loss and fiber strain relief with standard FO pigtail.

"COMPOSITES & SENSING"

SIEMENS

FLUVES RONDAL

Proud Technology Spin-off

Ghent University Material Science and Engineering

200 JAAR UNIVERSITEIT GENT

INFR/ABEL

245EA

OPTIMUM CPV

TU/e

University of Technolog

Atlas Copco

Founded **2012**

see. think. act.

ΤΟΥΟΤΑ

ArcelorMittal

COM&SENS MAKES ABSOLUTE SENSE !

DEME

Port of Antwerp

Dredging, Environment & Marine Engineering