Structural Health Sensing & Monitoring

LASER Centre

I AVER LEARNING DE LE ANDRE DE LE ANDRE

Advanced Material department

Raquel Travieso Puente, PhD raquel.travieso@aimen.es

11th June 2019

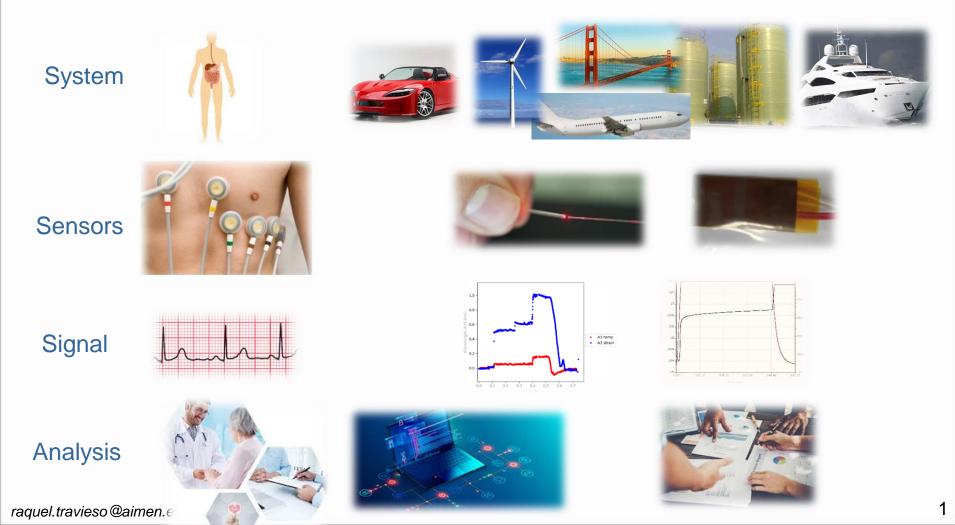
SHM

Fiber Optic Sensors (FOS) & DC-dielectric sensors towards manufacturing and SHM of composites

✤ SHM

- Definition
- Past Catastrophic Failures
- SHM Applications
- SHM Advantages
- SHM Steps

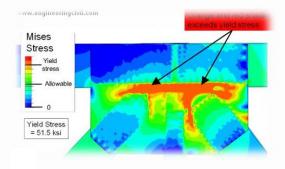
Fiber Optic Sensors (FOS) & DC-dielectric towards


manufacturing and SHM (NERO project)

SHM - Definition

Structural Health Monitoring (SHM)

the process of implementing a damage detection that can affect the system's performance and characterization strategy for engineering structures.



SHM – Past Catastrophic Failures

I-35 bridge collapse (Minneapolis, US, 2007) Need of repair – failure of gusset 13 killed +145 seriously injured

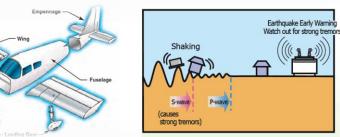
Sampoong department store collapse due to overload (Seoul, South Korea, 1955) 502 killed people 937 injured

Chevron Oil Explosion (Richmond, California, 2013) Old pipe - Crude oil leaking +15000 residents needed medical attention

SHM - Applications

Civil engineering

Buildings Bridges Dams Tunnels Mining


Chemical installations

Piping Tanks

Aerospace

Civil and military airplanes Space craft **Helicopters**

Energy

Oil&gas installations and pipelines Wind turbines Nuclear plants Tidal wave generators

Transportation

Automotive Trains Ships/boats

Geophysics Soil mechanics Volcanoes Earthquakes

raquel.travieso@aimen.es

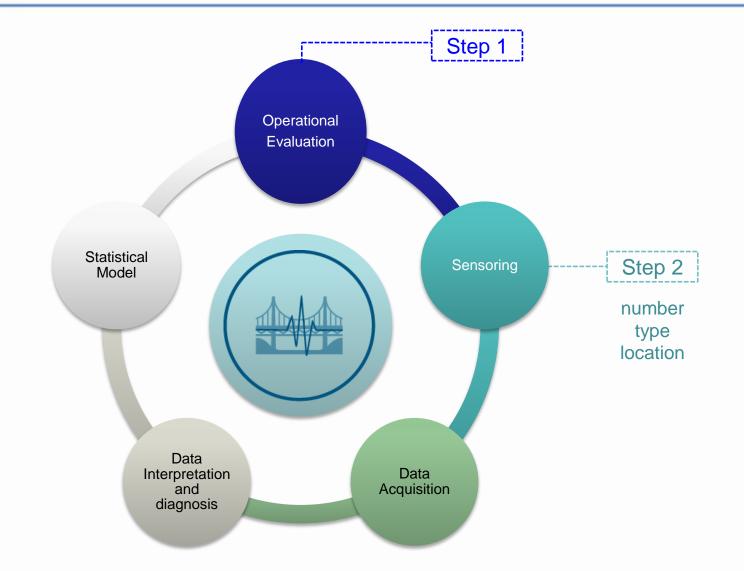
✓ **Sensoring damage** due to: strain, rotation, temperature, corrosion, leakage, etc.

✓ Manufacturing control:

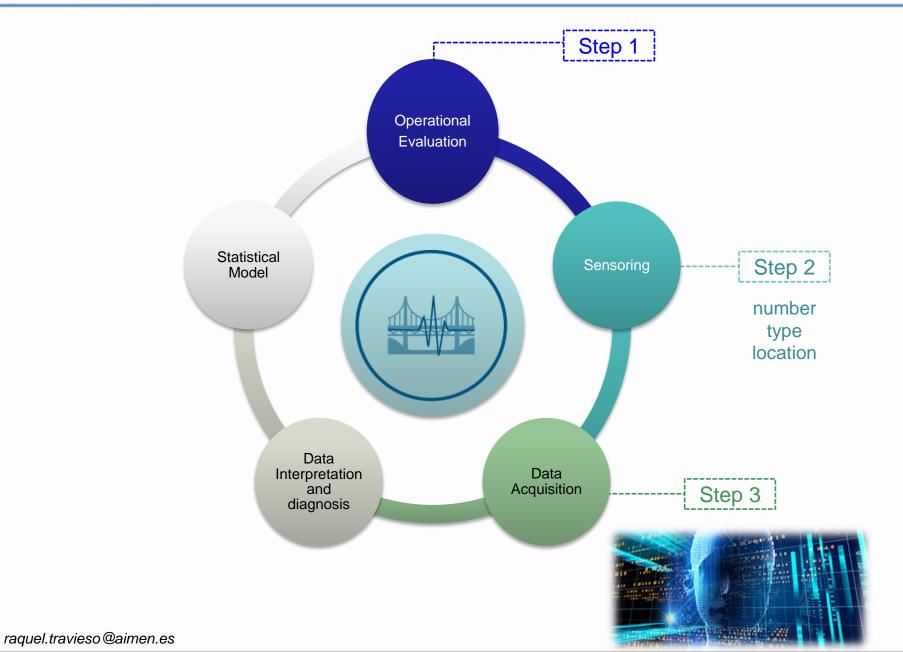
- curing control
- defect control
- reduce rejection

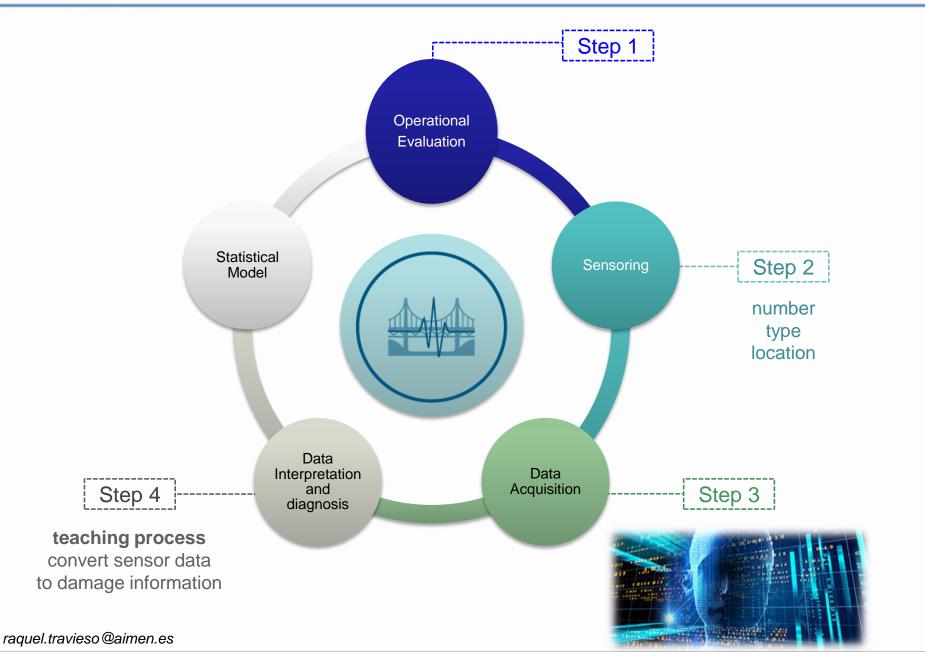
✓ In service control:

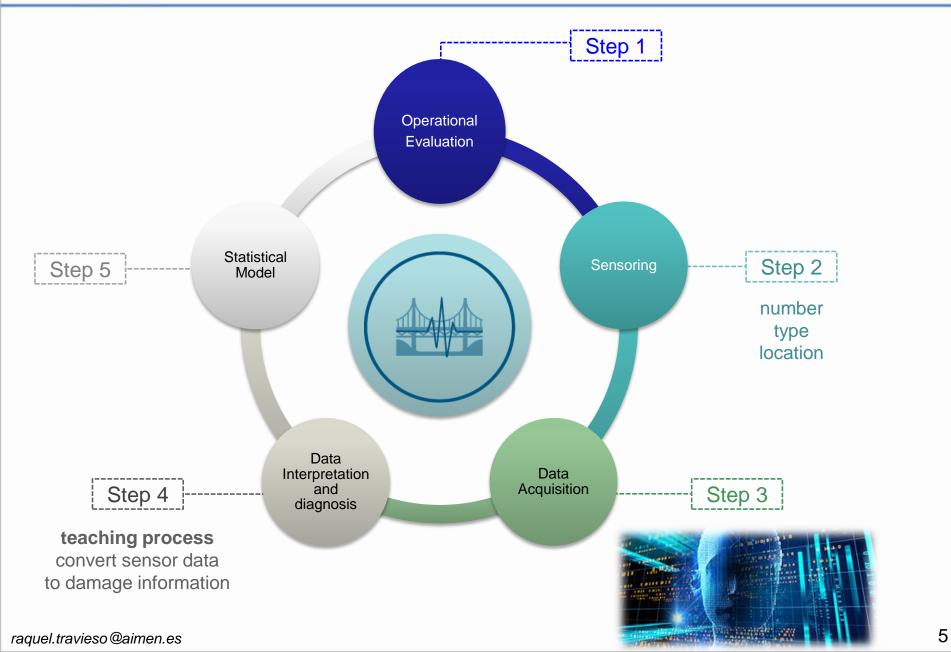
- detecting damage in early stage to enable proactive responses
- replacing schedule-driven maintenance with condition-based maintenance
- timely warning of impending failures
- ✓ Increase structures lifetime
- ✓ Time and cost effective



SHM - Steps







SHM

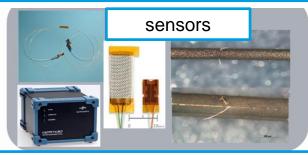
- Fiber Optic Sensors (FOS) & DC-dielectric sensors towards manufacturing and SHM of composites
 - Aim
 - Technologies & Materials
 - Technology A: DC-Dielectric sensors

- Real case at Galventus

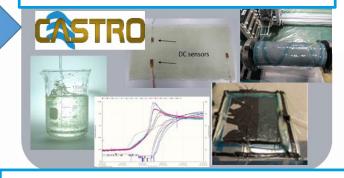
ADVANCED MONITORING SYSTEMS DEVELOPMENT FOR MANUFACTURING PROCESSING AND SERVICING OF COMPOSITES BASED ON NON-INVASIVE EMBEDDED SENSORS

XUNTA DE GALICIA CONSELLERÍA DE ECONOMÍA, EMPREGO E INDUSTRIA

Aim of the project

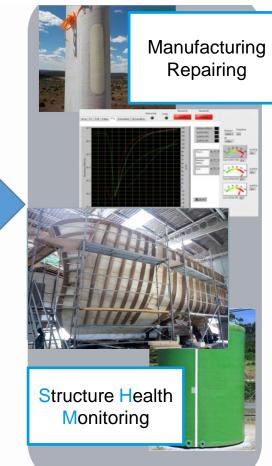

USE-CASES

SECTORS INVOLVED


TECHNOLOGICAL DEVELOPMENT

Fiberglas

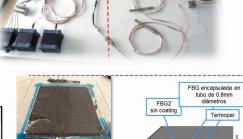
material responses characterization



machine learning & software development

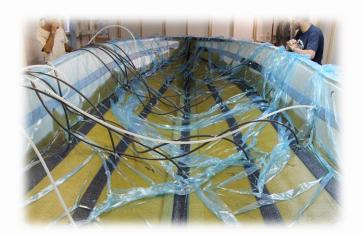
CUTTING-EDGE CONTROL **SYSTEMS**

amen NER/


•

Greater control in • curing process New leaking detection

- Ensuring product quality •
- Reducing rejection rates in production •
- Minimizing manufacturing time


FBG1 coating poliymida Fibra recubierta de Ni (347um

Validation of technology in materials and structures employed by each user

SHM

- Fiber Optic Sensors (FOS) & DC-dielectric sensors towards manufacturing and SHM of composites
 - Aim

- Technologies & Materials
- Technology A: DC-Dielectric sensors

- Technology B: Fiber Optic Sensors (FOS)
- Real case at Galventus

Technologies & Materials

Advanced Materials

Photonic sensors

Robotic &

Control

Thermoset & thermoplastic composites Process out of autoclave Monitoring manufacturing of composites

Technology A

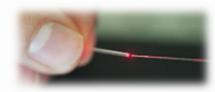
DC-DIELECTRIC SENSORS

Resin flow and cure evolution Monitoring based on ion mobility or dielectric measurement Machine Lea

Smart manufacturing – Machine Learning

Manufacturing process control

Structural Health Monitoring (SHM)


Technology B

FIBER OPTIC SENSORS (FOS)

Fiber Bragg Grating (FBG) – localized Distributed - continuous

Invasive % curing degree signal

Non-invasive Unknown signal

XUNTA DE GALICIA SU CONSELLERÍA DE ECONOMÍA, EMPREGO E INDUSTRIA

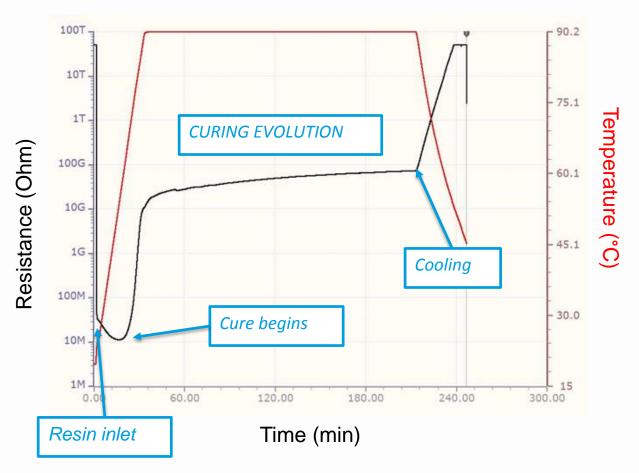
gain

TEACH

SHM

- Fiber Optic Sensors (FOS) & DC-dielectric sensors towards manufacturing and SHM of composites
 - Aim

- Technologies & Materials
- Technology A: DC-Dielectric sensors


- Technology B: Fiber Optic Sensors (FOS)
- Real case at Galventus

Technology A – DC-Dielectric sensors

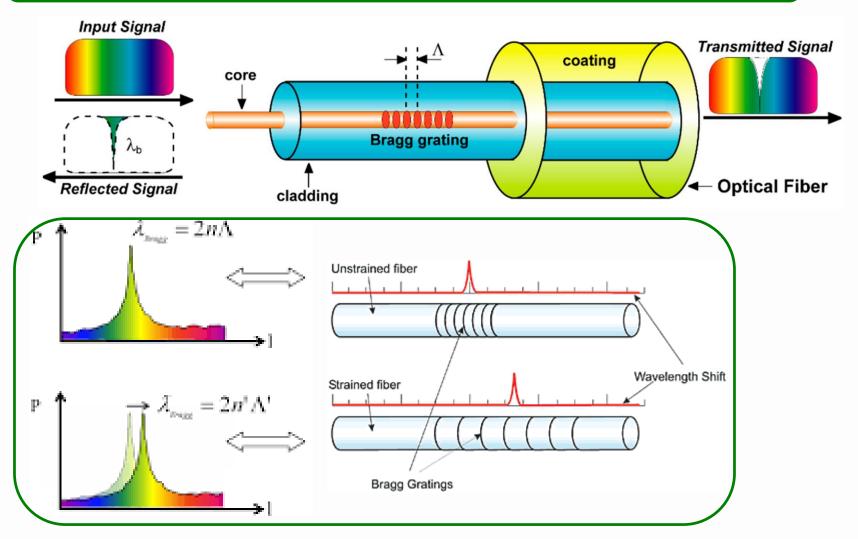
Monitoring Manufacturing Resin flow and cure evolution based on ion mobility or dielectric measurement

Monitoring Manufacturing Resin flow and cure evolution based on ion mobility or dielectric measurement exo up 100T Heat Flow (W/g) 10T 75.1 -0.2 Resistance (Ohm) 1T Temperature (°C) CURING EVOLUTION 100G 128.36*C 10G 108.92*C(I) 1G 115.18°C Cooling 2.359J/g -0.4 100M 30.0 Cure begins 10M 1M -15 180.00 300.00 Resin inlet Time (min) -0.6 -50 150 200 250 50 100 300 350 Temperature (°C) $\alpha = \frac{H_{\rm T} - H_{\rm r}}{H_{\rm T}} \times 100 \quad \begin{array}{l} \alpha \ (\%): \ {\rm curing \ degree} \\ {\rm H_R}: \ {\rm heat \ reaction} \\ {\rm H_{-}: \ heat \ 100\% \ curc} \end{array}$ H_{T} : heat 100% cure

curing degree = (307.3-2.4) / 307.3 = 99 %

SHM

- Fiber Optic Sensors (FOS) & DC-dielectric sensors towards manufacturing and SHM of composites
 - Aim

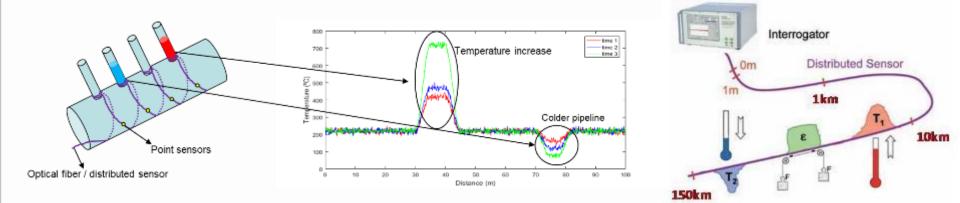

- Technologies & Materials
- Technology A: DC-Dielectric sensors

- Technology B: Fiber Optic Sensors (FOS)
- Real case at Galventus

Technology B - FOS - Fiber Bragg Grating (FBG)

In SHM, most commonly used Fiber Optic Sensors (**FOS**) is Fiber Bragg Grating (**FBG**) sensors, with Multiplexing capacity

raquel.travieso@aimen.es


Fiber optic point sensors interrogator development (FBG)

✓ High resolution and accurate measurements in localized locations (critical points)

Fiber optic distributed sensors interrogator development (Brillouin or Rayleigh)

✓ Distributed (continuous) measurements along distance

Advantages:

- ✓ Small size 125µm of diameter
- ✓ Light weight
- ✓ Passive: immune to electric and electromagnetic fields

- Easy integration into a wide variety of structures and materials, including composite materials, with little interference due to their small size and cylindrical geometry
- ✓ Resistant to harsh environments and high temperatures (<1000°C)</p>
- ✓ High sensitivity and resolution
- Multiplexing capability to form sensing networks
- ✓ Remote sensing capability
- ✓ Single ended remote operation over several km
- Can monitor a wide range of physical and chemical parameters: temperature, strain, humidity, pressure, pH, acoustic emissions, vibrations, etc.

Disadvantages:

- ✓ NOT mature technology
- ✓ Fragile
- ✓ Necessary to know its fundaments

SHM

- Fiber Optic Sensors (FOS) & DC-dielectric sensors towards manufacturing and SHM of composites
 - Aim

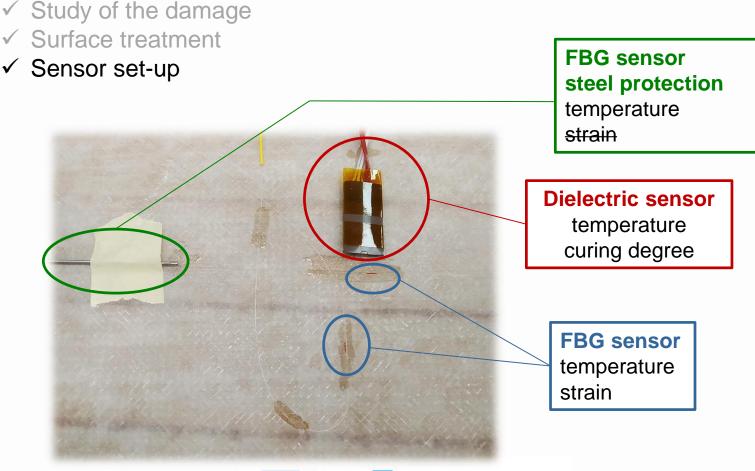
- Technologies & Materials
- Technology A: DC-Dielectric sensors

- Technology B: Fiber Optic Sensors (FOS)
- Real case at Galventus

17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades

LEADING EDGE REPARATION by Hand lay-up manual process

- ✓ Study of the damage
- ✓ Surface treatment


XUNTA DE GALICIA CONSELLERÍA DE ECONOMÍA, EMPREGO E INDUSTRIA

17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades

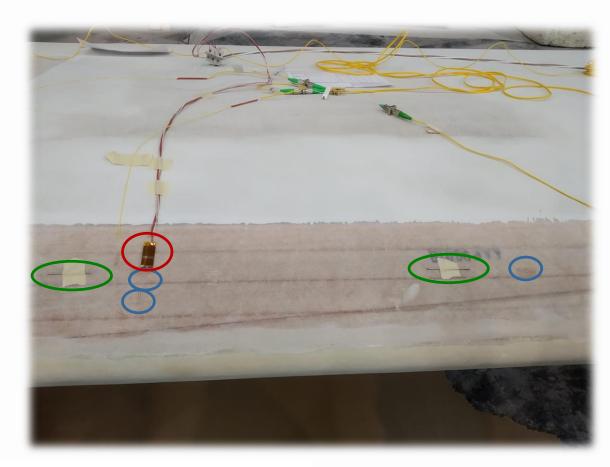
ER

LEADING EDGE REPARATION by HAND LAY-UP manual process

XUNTA DE GALICIA CONSELLERÍA DE ECONOMÍA, EMPREGO E INDUSTRIA

17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades

NER


LEADING EDGE REPARATION by HAND LAY-UP manual process

- ✓ Study of the damage
- ✓ Surface treatment
- ✓ Sensor set-up

FBG sensor steel protection temperature strain

Dielectric sensor temperature curing degree

FBG sensor temperature strain

17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades

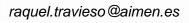
ER

LEADING EDGE REPARATION by HAND LAY-UP manual process

- ✓ Study of the damage
- ✓ Surface treatment
- ✓ Sensor set-up
- $\checkmark\,$ Double sided tape to limit the zone to be repaired

XUNTA DE GALICIA CONSELLERÍA DE ECONOMÍA, EMPREGO E INDUSTRIA galventus

17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades



LEADING EDGE REPARATION by HAND LAY-UP manual process

- ✓ Study of the damage
- ✓ Surface treatment
- ✓ Sensor set-up
- ✓ Double sided tape
- ✓ Resin + catalyst
- ✓ Reinforcement: glass fiber

XUNTA DE GALICIA CONSELLERÍA DE ECONOMÍA, EMPREGO E INDUSTRIA

17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades

- ✓ Study of the damage
- ✓ Surface treatment
- ✓ Sensor set-up
- ✓ Double sided tape
- ✓ Resin + catalyst
- ✓ Reinforcement: glass fiber
- ✓ Second layer of FBG sensors

17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades

- ✓ Study of the damage
- ✓ Surface treatment
- ✓ Sensor set-up
- ✓ Double sided tape
- ✓ Resin + catalyst
- ✓ Reinforcement: glass fiber
- ✓ Second layer of FBG sensors
- ✓ Resin + catalyst
- ✓ Reinforcement: glass fiber
- ✓

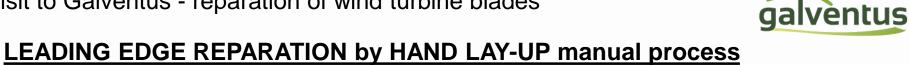
17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades

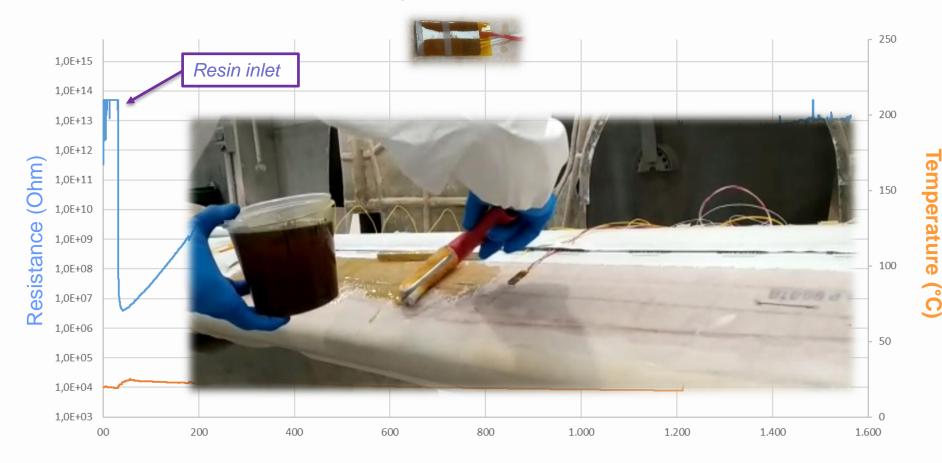
- ✓ Study of the damage
- ✓ Surface treatment
- ✓ Sensor set-up
- ✓ Double sided tape
- ✓ Resin + catalyst
- ✓ Reinforcement: glass fiber
- ✓ Second layer of FBG sensors
- ✓ Resin + catalyst
- ✓ Reinforcement: glass fiber
 ✓
- ✓ Bleeding blanket
- ✓ Peel ply

17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades

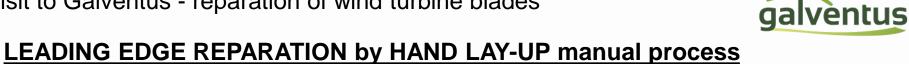
- ✓ Study of the damage
- ✓ Surface treatment
- ✓ Sensor set-up
- ✓ Double sided tape
- ✓ Resin + catalyst
- ✓ Reinforcement: glass fiber
- ✓ Second layer of FBG sensors
- ✓ Resin + catalyst
- ✓ Reinforcement: glass fiber
 ✓
- ✓ Bleeding blanket
- ✓ Peel ply
- ✓ Absorption blanket

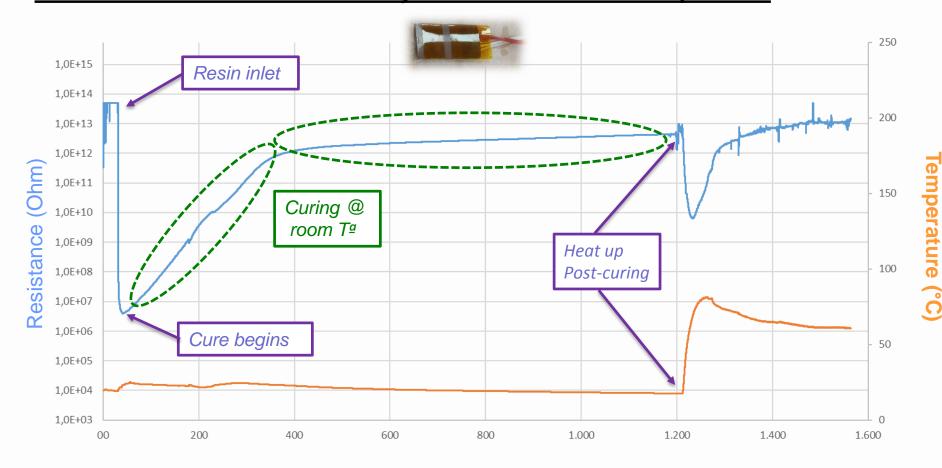
17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades


- ✓ Study of the damage
- ✓ Surface treatment
- ✓ Sensor set-up
- ✓ Double sided tape
- ✓ Resin + catalyst
- ✓ Reinforcement: glass fiber
- ✓ Second layer of FBG sensors
- ✓ Resin + catalyst
- ✓ Reinforcement: glass fiber
- ✓
- ✓ Bleeding blanket
- ✓ Peel ply
- ✓ Absorption blanket
- ✓ Plastic bag > vacuum



17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades





Time (min)

17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades

17:30-19:00 (12th June) visit to Galventus - reparation of wind turbine blades

LEADING EDGE REPARATION by base- first layer GF HAND LAY-UP manual process FBG sensor strain - 78cm FBG sensor strain - 125cm FBG sensor strain transv. 78cm FBG sensor between first-second layer GF 1500 10^{14} FBG sensor strain - 27cm FBG sensor strain transv. - 78cm 100 base- first layer GF DC sensor 10¹³ 1000 FBG sensor temp - 69cm Between GF-GF layer 1012 FBG sensor temp - 38cm 80 500 FBG sensor temp - 94cm Temperature (C) DC sensor temp Strain (microstrain) 10¹¹ (0+0) 10¹⁰ (0+0) 10⁹ (0+0) 60 0 -500 40 10⁹ -100020 108 -1500107 0 10 15 20 25 0 5 Time (h) 0 5 10 15 20 25 time (h)

raquel.travieso@aimen.es

galventus

Tracking the flow of resin infusion is easy, just look for the dark areas to see the progress.

Manufacturing control by monitoring the full process

SHM Take home

Fiber Optic Sensors (FOS) 🛟 DC-Dielectric sensors 😑

- ✓ Teaching process from DC to FOS
- Control of manufacturing process:
 - o Vacuum level
 - Resin inlet
 - Wetting of the layers
 - Resine curing degree
 - o Defect control
 - Reduce rejection
- ✓ Embedded sensors for in service monitoring (SHM):
 - Detecting damage in early stage (corrosion, strain, leakage, etc.)
 - Replace Schedule-driven maintenance with condition-based maintenance
 - Timely warning of impending failures
- ✓ Lifetime control
- ✓ Improves safety
- ✓ Time and cost effective

aimen@aimen.es

Sede Central Centro de Aplicaciones Láser Polígono Industrial de Cataboi SUR-PI-2 (Sector 2) Parcela 3 ES 36418 O PORRIÑO - Pontevedra Telf. +34 986 344 000

Sede Torneiros Edificio Armando Priegue Relva 27 A – Torneiros ES 36410 O PORRIÑO - Pontevedra Telf. +34 986 344 000

Delegación A Coruña Polígono Industrial de Pocomaco Parcela D-22 Oficina 20 ES 15190 A CORUÑA Telf. +34 637 127 253

Delegación Madrid C/ Rodríguez San Pedro 2 Planta 6, Oficina 609 Edificio Inter ES 28015 MADRID Telf. +34 687 448 915

Delegación Andalucía C/ Leonardo da Vinci 18 ES 41092 SEVILLA Telf. +34 670 412 243

Delegación Zona Norte Parque Tecnológico de Zamudio Edificio 103, Planta 2 ES 48170 ZAMUIDO - Vizcaya Telf. +34 662 489 181

amen

Thanks for your attention

Raquel Travieso Puente | Senior R&D&I Advanced Materials Tlf. +34 986 344 000 (ext. 3211) | mvl: +34 670 95 24 15 e-mail: raquel.travieso@aimen.es