SSAB

A stronger, lighter and more sustainable world SSAB is a global steel company with a leading position in high-strength steels and related services.

SSAB in brief

Steel making since

1878

Annual steel production capacity: **8.8 MILLION 8.8 TONNES**

OUR BUSINESSES:

SSAB Special Steels, SSAB Europe, SSAB Americas, Tibnor, Ruukki Construction

SSAB in the global steel market

SSAB

SSAB in brief

Our businesses – Leaders in their respective sectors

Killing the myths

- You can not use high strength steel when producing in low cost countries
- The weight reductions and benefits are not that high
- Using high strength steel is not safe enough
- Offshore and marine classification societies do not allow these steel grades
- You will end up with stability and stiffness issues when using high strength steels
- You can not make use of high strength steels when you have fatigue load case
- High strength steels are difficult to weld
- Using high strength steels is expensive

SSAR

Specifying it right, It is safe!

The extreme consistency and precision of Strenx steel is the result of

- An exceptionally clean steel
- A carefully controlled steel-making process

Your benefits

- Guaranteed product properties
- Predictable workshop performance
- Efficient production
- Higher quality
- More accurate dimensioning
- Excellent weldability

SSAB

Page 1 (2)

SSAB EMEA AB, SE-613 80 OXELÖSUND, Sweden

Inspection certificate A02 Issuing department Quality inspection			tment A pection	05 Purch	Purchaser order no A07 Our order no 174169-100			A08	3 Invoice no A19 Certific: 15951		ate no and date 1338 2016-04-25	A03				
Purchaser		40	A11 6172	Product Structural ste	el	B01	Marking Steel	(Stamping) grade, Manufa	cturer,	MATERIAL ID			B06	Standard/r OX STRE Steel grade	ules NX 700 STRENX 700 E	B02
C/O Bvba Thor Shipping & Transport Quay 117-123, Vrieskaaiport 2030 Antwerpen Belgium				Quantity B08 1	Dimension T 20 \	vensions [mm] B 20 W 2500 L 6000		B11 Weight [kg] 2355			B12 Del C		Deliv. (Q	Cond. B04	Internal code 23341	B16
				Consignee A06 SSAB EMEA AB Antwerp Stock C/o Bvba Thor Shipping & Transport 2302										B15		
MATERIAL ID 117054-556249																
Chemical composition												C71-0	02 Cart	on equivalent e	tc	C93-C99
Heat no C 117054 .14	Si .31	Min I 1.16 .	P \$.010 .00	Cr Ni 01 .30 .06	Mo V .171 .013	Ti Cu /	AI Nb 039 .00	B N 1 .001 .003	EW .43	C14 .289			CE\ C14	/(EW)=C+N }=CET=C+	/IN/6 + (CR+MO+V)/5 + (I (MN+MO)/10 +(CR+CU)	NI+CU)/15 20 +NI/40
CD4 Testtype	Millcode	000 Sp po	CO1 pecimen osition	1 C02 Direc- tion	Treat- ment	Specimen type	Temp C]	C03 Test re [degr	sults			~		C	CEV = 0,43	5
Tensile Test	664534	То	op end	Transvers	Delivery condition	Rectangular		C Rp0.2 7	2 [MPa] 80	C12] Rm [MPa] 826	A5	13 [%] 17	\frown		CET = 0,29	0
Impact test	664534	То	op end	Transvers	Delivery condition	Charpy-V 10x10	-40	C E 1	42 [J] 85	C42 E [J] 211	0 E 2	42 [J] 33	C43 Ave [J] 210			
Impact test	664547	Та	ail end	Transvers	Delivery condition	Charpy-V 10x10	-40	C E 2	:42 [J] :18	C42 E [J] 262	C E 2	42 [J] 57	C43 Ave [J] 246	1		
													\bigcirc			
B02: EN 10025-6/S690QI																
EN 10025-6, OPTION 30.																
ALSO MEETS REQUIREMENTS OF WELDOX 700E																
Customer article per 2202																

Customer article no: 2302

	It is hereby certified that the material Z02	((This certificate is produced with EDP Z01	A22	A04
Ŵ	described above complies with the requirements of the order.	0045-CPD-0837 www.seab.com/downloads	and valid without signature Quality Inspection Department/ R Tschemernjack / A Backlund		VERYORMANCE STREE www.strenx.com

Extended guarantees

Strenx guarantees cover:

- Granted tight Thickness tolerances
- Granted Flatness of plate
- Bending of plate

Fatigue Strength with Yield Strength

F

Fatigue Strength vs Cleanness in parent material

SS/AB

Inclusion crack initiations in wind turbine gearbox

Fatigue test

SSAB

Specifying it right, It is safe and efficient!

Specifying it right:

- S690 QL based on EN 10025-6 without further options
- Strenx 700 E = EN 10025-6 + SSAB Clean steel, CSR Casting & Strenx Guarantees
- Classified 690 = DNV-GL VLE690, LR EH69, ABS EQ70
- Strenx 700 OME = Class approval + SSAB Clean steel, CSR Casting & Strenx Guarantees

Additional Options:

- Z35 = Guaranteed strength properties in Z directions
- Ultrasound test = Up to S3E3, Assure no large inclusions, lamination or center defects
- Cleanness = SS ISO 11 11 16 or ASTM E45 Method A

Your benefits

- Guaranteed product properties
- High fatigue performance
- Predictable workshop performance
- Efficient production

- ► Higher quality
- More accurate dimensioning
- Excellent weldability

Where can we use Extra high strength steels in ships

Your input from yesterday

- FPSO Blast walls
- Container Ship Shear Box
- Cruise Ship upper Decks
- Steel / Composite joints
- High Speed Crew supply ships for platforms and wind mills
- Primary barriers for LPG tankers
- Weldable Reinforcement wires for composite structures
- Aircraft structures
- Deck bottom Transition connections
- Pillars between decks
- Palest for Ship decks
- Propeller and rodders

Blast Protection

For Naval ships:

- SSAB Strenx 700 grades have been used in Sub-marines since the 80ies
- Reinforcements of hulls to resist collisions and blasts close to the ships
- Weight and performance optimized bulkheads and safety doors
- Protection of ammunition storages

Fatigue improvements of critical components

By using formed or bolted Strenx 700

- Around window and door corners
- In joints of steel profiles
- In moving car decks and Ro-Ro Ramps
- In Container securing bridges
- In Hatch covers

Rollforming High Strength steels

SSAB

The Fire Challenge

Hardox HiTemp – a structural wear steel that resist heat

- Provides a cost-efficient solution for strength (1100 Mpa) and wear resistance (400HB) at high temperatures in the 300–500° C range (570–930° F).
- Whereas traditional quenched and tempered wear-resistant steels lose hardness at higher temperatures, Hardox[®] HiTemp high-temperature steel delivers extreme wear resistance. Its properties are achieved by using high-quality raw material combined with a carefully controlled manufacturing process.
- Hardox[®] HiTemp is delivered as 5–51 mm (0.197"–2") plate. It can be cut, welded and machined using the same kind of machinery and technology as for conventional steel.

3D forming of SSAB Steel with 1500 MPa

50% weight reduction

- > 3D forming taking away all critical welds enable massive weight reduction.
- This 3D forming is done in hot condition using a grade that is 1300 1500 MPa after hardening.

SSAB

2D forming of SSAB Steel with 700 MPa

Keel, Rodder, Propeller – Everyting is possible

Fatigue improvements of critical components

Strenx 700 in combination with Composite Joints

- In joints of steel profiles
- In inner structures of ship hulls

Fatigue improvements of critical components

Strenx 700 in combination with Composite Joints

- In joints of steel profiles
- In inner structures of ship hulls

Ice breaking reinforcements

For commercial vessels with ICE class 1A:

- Enable keeping normal thickness based on fatigue in the welds save weight and welding cost compared to increasing thickness using mild steel or EH36
- Good weldability with high Impact toughness will secure safety form Ice hits.

Ice breaking reinforcements

For Ice Breakers:

- SSAB has developed structural design solutions used in Mining truck industry that we believe can be used for heavy Ice Breaking.
- Based on more flexible joining of the hull plate to the scantling the shear forces can be reduced.
- Using this method the forces will be more distributed in the plates and thus enable better utilization of high strength steels.

This can be done both along the ship as well as transvers the ship length.

Bulk Cargo Lining – Hardox in Cargo Boxes

Inland barges:

- Hardox 400
- Hardox 450
- Hardox 500

Sea going bulk carriers:

- Hardox 400
- Hardox 450

Picture replacing ordinary ship plates for Hardox 450. Easy to understand that the normal mild steel gets damaged and hard to clean.

Payload

- Traditional plate thickness using Grade A
- Example using HARDOX 400
- Adding Strenx 700 OME in structural hull

Economic benefit

What is the benefit of 65 tons higher payload? Distances in km between some of the inland waterway ports.

Bulk Cargo Lining – Hardox in Cargo Boxes

Benefits:

- Longer life time
- No need of re-lining
- Higher payload
- Easier cleaning the box
- Shorter time at harbor
- Lower fuel consumption

Design Challenges:

- Need material adapted welding procedure
- For sea going ships, acid conditions (NaCl) at sea increase hydrogen cracking risk. This means that it is not suitable using higher grade than Hardox 450.

Class and certification:

- Classification mandatory
- General approval for Hardox and RAEX in inland bulk cargo barges.
- For sea going ships we have to get separate approvals for each ship with detailed instructions on how to weld in the Hardox steels in the hull in order to maintain the fatigue strength of the hull.

Offshore and Marine cranes

Benefits:

- Reaching longer
- Larger lift capacity
- Lower weight footprint
- Additional safety margin
- Production cost reduction
- Installation cost reduction

Design Challenges:

- Not only vertical load
- Twist and torsion load
- Heave compensation
 - Fatigue due to general ship movements both while in lifting use as well as in transportation mode
- Acid conditions (NaCl) at sea increase hydrogen cracking risk. Max 960 grade.

Class and certification:

- Classification non mandatory
- 3rd party Certification mandatory
- Some classification societies offer guidelines for lifting appliances based on class rules.
 Often very conservative.
- Good design with well worked through calculations open up for certification using high strength steels up to 960 Mpa

Offshore and Marine cranes

Knuckle boom crane:

- Boom parts
- Joints and knees
- Winch drums
- Winch structures
- Base tower
- Rotation gears

A-frame crane:

- Top Boom
- Wheels and Lifting devises
- Lift arms
- Critical joints

Mast crane:

- Tension bars
- Pedestal/mast
- Lattice boom
- Winch structures
- Critical joints
- Rotation gears

Davits and Launch and Recovery Systems

Applications:

- Boom parts
- Joints and knees
- Winch equipment

Jack-up legs and pylons

Benefits:

- Larger lift capacity
- Lower weight footprint
- Additional safety margin
- Production cost reduction
 - Welding
 - Bending of chords
- Installation cost reduction

Design Challenges:

- Not only vertical load
- Twist and torsion load
- Fatigue due to waves and wind
- Acid conditions (NaCl) at sea increase hydrogen cracking risk.

Class and certification:

- Classification mandatory
- Need classed grades: Strenx 7000ME / AB EQ70 Strenx 7000ME / VLE 690 Strenx 7000ME / LR EH69
- Very high demands on the welds: 46 J at -40 Deg C in fusion line

Jack-up legs and Pylons

Tube Pylons for lift boat:

- Pylon tubes
- Jacking system
- Structure around jacking system

Lattice Jack-up legs:

- Gear racks
- Stiffening chords
- Jacking gears
- Structure around jacking system
- Bracing tubes

Ocean Energy

Benefits:

- Reaching longer
- Larger lift capacity
- Lower weight footprint
- Additional safety margin
- Production cost reduction
- Installation cost reduction

Design Challenges:

- Not only vertical load
- Twist and torsion load
- Heave compensation
- Fatigue due to general ship movements both while in lifting use as well as in transportation mode
- Acid conditions (NaCl) at sea increase hydrogen cracking risk. Max 960 grade.

Class and certification:

- Classification non mandatory
- 3rd party Certification mandatory
- Some classification societies offer guidelines for lifting appliances based on class rules.
 Often very conservative.
- Good design with well worked through calculations open up for certification using high strength steels up to 960 Mpa

Ocean Energy

Dredging and bulk cargo buckets

Benefits:

- Longer life time
- Higher payload

Design Challenges:

- Need material adapted welding procedure
- For work in salt water, acid conditions (NaCl) increase risk of hydrogen cracking. This means that it is not suitable using higher grade than Hardox 450.

Class and certification:

 No classification mandatory

"We believe that the knowledge

SSAB has gathered over the last 40 years using high strength steels,

combined with your knowledge

of developing products for renewable energy,

will take us both further"

