

Technology Transfer Group: Infrastructure

Rules and Regulations in FRP Infrastructural applications

Pitea, 23-01-2019

Content Presentation

- Current FRP Infrastructural Market
- EU Design Guidance
 - JRC (joint review committee)
 - Usage of guidance notes from other sectors
- National regulations
 - Netherlands: CUR 96 / Edition 2017
 - Italy: CNR-DT 205/2007
 - Germany: BÜV Empfehlung TKB
 - Insight in CUR 96 / Ed. 2017

Current FRP infrastructural market

- Growth in European FRP infrastructural market
- Larger more complex FRP civil constructions
- Rules & Regulations (EU) are under development
- Pro-active National parties

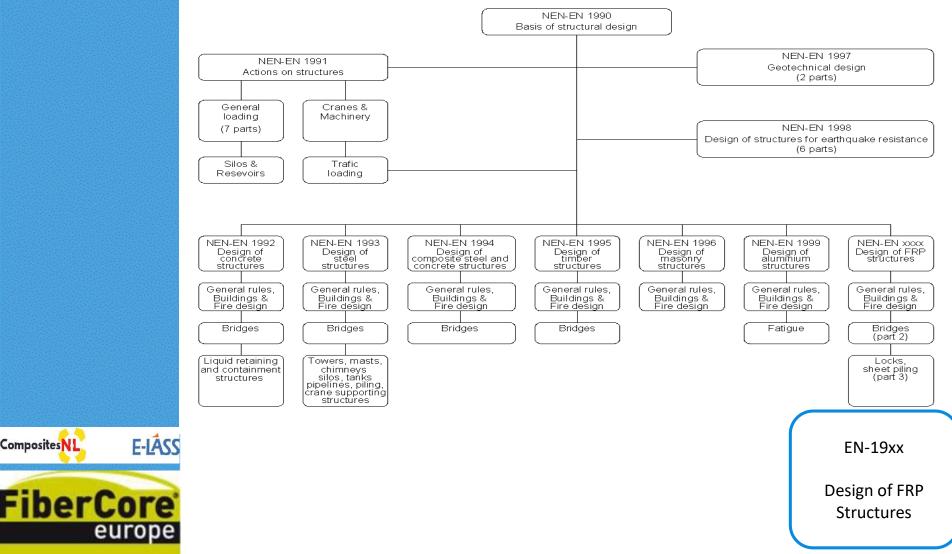
Typical infrastructural FRP Structures

- Trusses
 - Profiles
 - (pultrusion)

Pontresina bridge by Fiberline

- Monocoque structures
 - Shells
 - Sandwich
 - (infusion)
 - Specific structures
 - InfraCore Inside

Frederikstadt bridge by FireCo



Composites NL

EU Design Guidance: Current

EU Design Guidance: under development

National Notes in European design guidance

CUR96; 2017 FRP in buildings and civil engineering structures

BÜV Empfehlung TKB

EU Design Guidance: under development

<u>FRP design guidance for infrastructure makes use of FRP</u> experience in other markets

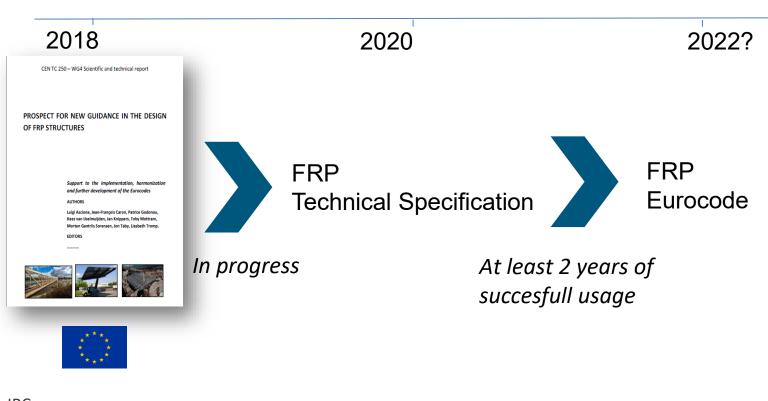
MIL Handbook 17

GL Offshore Wind Turbines

DNV-OS-C501 Offshore Standard

EN 13121 FRP Pressure vessels

Analysis methods Material tests Building block approach Fatigue of FRP Material and connections FRP in a marine climate FRP in fire Chemical resistance Accelerated ageing test



EU Design Guidance: under development

European design guidance for FRP: timeline

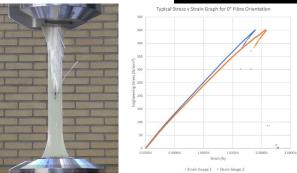
JRC Prospect for the Design of FRP Structures

Composites NL

Fiber

EU Design Guidance: challenges for FRP

- Not 1 material, but wide range of materials
- Fibre orientations
 - Various lay ups
 - Directions with fibers & directions with few or no fibers!
- Influence of quality of resin & production proces
- Reliability of models, many parameters
- In situ composed material => associated suitable quality control system
- E-LÁSS Technology development...

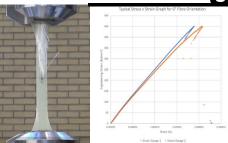


A combination of analytical models and **Testing**

- When no sufficiently reliable theoretical model is available (yet)
 - representative test results from other projects can be used!
- As part of quality control

ILSS

- Tensile/bending test
- (general quality)
- (fibre resin compatibility)
- Glass transition temperature (cure, resin and durability)



A combination of analytical models and **Testing**

As part of the design

Determine characteristic mechanical properties

- Materials
- Connections
- Complex phenomena: creep, fire, fatigue after impact, ...

As part of Quality Control & Health Monitoring

- Deflections
- Eigenfrequency

A combination of analytical models and **Testing**

Full-scale test Lotharingen bridge, Utrecht. Lightweight Structures and Damsteegt

If the structure is continuously exposed to a service temperature of more than 40 °C combined with water (humidity) the effect of this should be determined by means of tests under these combined conditions.

COMMENT

The combination of elevated temperature and water (humidity) may lead to a more severe degradation of properties than for the individual effects when combined.

A combination of analytical models and **Testing**

Full scale test:

30 M fatigue cycles 60 tons after serious impact Eurocode InfraCore traffic deck 3m x 7m

No structural damage growth **Bridge installed** with 50 years of Future Lifetime,

without repair

E-LÁSS

Composites NL

FiberCo

vaste lager, verankerd aan vloer. Pinned bearing. Side a

Witnessed by DNV-GL (at WMC & TNO)

A combination of analytical models and **Testing**

E-LÁSS

europe

Composites NL

FiberCore

CUR recommendation 96 Edition 2017 FRP in buildings and civil engineering structures

- Partial factors
 - Material factors
 - Conversion factors
- Material properties
- ULS / SLS
 - Modeling of FRP
 - Design rules
- Quality control
 - Protocols
 - Testing
 - Imperfections

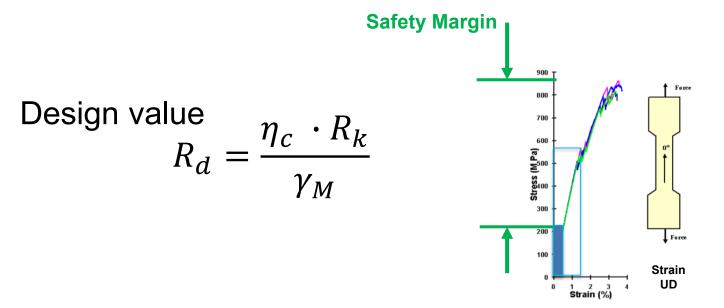
ULS: Ultimate Limit State SLS: Serviceability Limit State

E-LÁSS

Composites NL

- CUR recommendation 96 Edition 2017 FRP in buildings and civil engineering structures
- Guarantee reliability & Safety (Realistically conservative)
- Generic for market
- Allow for economic design
 - sufficient quality control

- MANY CHALLENGES HAVE BEEN TACKLED
- Give direct guidance (Maturing market)
 - Design rules AND Testing: allow for techn. developments
 - Annex J: points of attention to inform inexperienced clients, owners, contractors
 - Comments throughout, to explain relevance of the rule
 - Chapter for details, realization, maintenance & testing
 - Extra component partial material safety factor

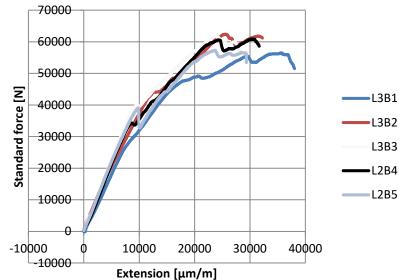


FRP in buildings and civil engineering structures

Design Value vs Characteristic Value

- γ_M = material safety factor
- η_c = conversion factor

(for scatter of material properties, ...) (for ageing and climate)



CUR recommendation 96 Edition 2017 FRP in buildings and civil engineering structures

Scatter of material properties ~ coefficient of variation

$$V_{\chi} = \frac{S_{\chi}}{m_{\chi}}$$

 V_x = coefficient of variation s_x = standard deviation m_x = average value

Composites NL

FiberCo

europe

CUR recommendation 96 Edition 2017

FRP in buildings and civil engineering structures

Partial material factor (CUR96; JRC)

- γ_{M1} takes into account uncertainties in obtaining the material properties
- □ 1.15 : properties derived from tests
- □ 1.35 : properties derived from theory
- (Future: 1.0 when fully mature quality control systems and analytical models)

 $\gamma_{\mathsf{M}} = \gamma_{\mathsf{M1}} \cdot \gamma_{\mathsf{M2}}$

γ_{M2} takes into account uncertainties due to the nature of the constituent parts and the production method (i.e scatter in material properties)

FRP in buildings and civil engineering structures

<u>Partial material factor"γ_M2" ~ Vx and failure mode</u>

Conditions	Ultimate Limit State			
	Strength	Local Stability	Global Stability	
Production Process and properties of FRP with $V_x \le 0,10$	1.2	1.4	1.35	
Production Process and properties of FRP with $V_x \le 0,17$	1.5	2.0	1.50	

Vx: coefficient of variation

≤ 0,10: pulltrusion, vacuum infusion, ...

≤ 0,17: hand lamination

Producer has to demonstrate that the production process meets this requirement

FRP in buildings and civil engineering structures

Conversion factors: simplified method to include climatic influence, long term effects

- Temperature $\eta_{c} = \eta_{ct} \cdot \eta_{cm} \cdot \eta_{cv} \cdot \eta_{cf}$
- Moisture
- Creep
 - Depending on laminate lay up
 - When critical for design to be verified by tests
- Fatigue

E-LÁSS

Composites NL

FiberCo

- ONLY for reduction of stiffness
- Strength effect
- Life time based on fatigue stress cycles (Miner sommation).

FRP in buildings and civil engineering structures

Conversion factors: simplified method to include climatic influence, long term effects

$\underline{\eta}_{c} = \underline{\eta}_{ct} \cdot \underline{\eta}_{cm} \cdot \underline{\eta}_{cv} \cdot \underline{\eta}_{cf}$

- Temperature n_{ct}
 - ULS: 0.9;
 - **SLS**: **1.0** for $T_d \le \underline{T}_g 40 \ ^\circ\text{C}$; **0.9** for $\underline{T}_g - 40 \ ^\circ\text{C} < T_d \le \underline{T}_g - 20 \ ^\circ\text{C}$.
- Moisture n_{cm}
 - 1.0 (dry) 0.9 (dry/wet) 0.7 (wet)
- Creep deformations n_{cv}
 - Typical values nev = 0.4 0.8 (lay up dependent)
 - To be verified by tests when critical for design
 - NB: for strength verification under permanent loads a creep rupture limit applies.

E-LÁSS

europe

Composites NL

FiberCore

• 0.9 (only for stiffness reduction)

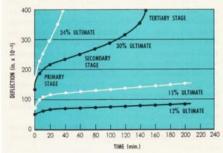
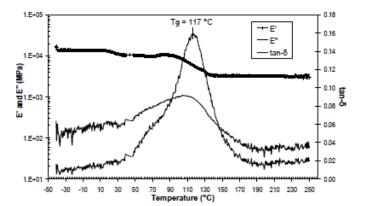


Figure 1. Creep curves for different stress levels for polyester resin, chopped mat laminates in water at 48° C. (17)

E-LÁSS

Composites NL

Fiber



CUR recommendation 96 Edition 2017 FRP in buildings and civil engineering structures

Glass transition temperature Tg

- Tg = Temperature for which the stiffness of the resin reduces. (transition to *rubber phase*)
- Tg is an important parameter for durability :
 - Tg requirements in resin selection
 - Tg verification as part of quality control
 - High **actual** Tg: lower reduction factors in design!

Source: research EPFL Switzerland

FRP in buildings and civil engineering structures

Chapter 3 Materials: Ply properties (building blocks)

Fiber and resin properties

Tabel 3 Nominale waarden voor de stijfheidseigenschappen van een UD-lamel.

Vf	E ₁ [GPa]	E_2 [GPa]	G12 [GPa]	V12
40 %	30,8	8,9	2,8	0,30
45 %	34,3	10,0	3,1	0,29
50 %	37,7	11,3	3,5	0,29
55 %	41,1	12,8	3.9	0,28
60 %	44,6	14,6	4,5	0,27
65 %	48,0	16,7	5,1	0,27
70 %	51,4 .	19,3	6,0	0,26
R	eductiefactor UD-	stijfheidswaarde	n (behalve 1/12): 0,9	97

 Tabel 4
 Nominale waarden voor de stijfheidseigenschappen van (gebalanceerde) weefsel-lamellen.

Vf	E ₁ [GPa]	E_2 [GPa]	G12 [GPa]	V12
25 %	13,4	13,4	2,1	0,21
30 %	15,5	15,5	2,3	0,20
35 %	17,6	17,6	2,5	0,20
40 %	19,8	19,8	2,8	0,19
45 %	22,1	22,1	3,1	0,19
50 %	24,5	24,5	3,5	0,19
55 %	27,0	27,0	3,9	0,18

Toelichting:

Teenandere mogelijkheid om de eigenschappen van een weefsel-lamel te bepalen is om het lamel te beschouwen als een symmetrisch o/90-lamilnaat van UD-lamellen en volgens de klassieke laminatentheorie te berekenen, waarop dan weer de reductiefactor wordt toegepast.

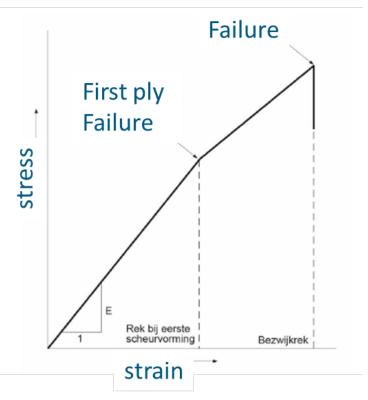
Tabel 5: Nominale waarden voor de stijfheidseigenschappen van een mat-lamel

Vf	E_1 [GPa]	E2 [GPa]	G12 [GPa]	V12
10 %	6,2	6,2	2,3	0,33
12,5 %	6,9	6,9	2,6	0,33
15 %	7,6	7,6	2,9	0,33
17,5 %	8,3	8,3	3,I	0,33
20 %	9,1	9,1	3,4	0,33
25 %	10,6	10,6	4,0	0,33
30 %	12,2	12,2	4,6	0,33

6.8.3 Nominale waarden sterkte-eigenschappen Voor de drie in 4.1 genoemde typen lamellen mogen de onderstaande nominale waarden voor de sterkte-eigenschappen worden aangehouden, rekening houdend met het gestelde in 6.8.1.

Ply properties:

- Tabels
- Formulas (Halpin-Tsai Manera)
- Laminate properties:
 - Classical laminate theory
 - => software is available



CUR recommendation 96 Edition 2017 FRP in buildings and civil engineering structures

Design verification on 3 levels

Profiles: cross section level

- Plates and shells:
 - Ply level
 - Laminate level

Failure criterion: Ultimate failure

CUR recommendation 96 Edition 2017 FRP in buildings and civil engineering structures

Chapter 6: Profiles

- Verification on cross sectional level (capacity of profile)
- Common for pultrusion profiles

$$\frac{N_{Ed}}{N_{Rd}} + \frac{M_{Y,Ed}}{M_{Y,Rd}} + \frac{M_{Z,Ed}}{M_{Z,Rd}} + \frac{V_{Y,Ed}}{V_{Y,Rd}} + \frac{V_{Z,Ed}}{V_{Z,Rd}} + \frac{T_{Ed}}{T_{Rd}} \le 1,0$$

Waarin: N_{Ed}, M_{Y,Ed} en M_{Z,Ed}, V_{Y,Ed}, V_{Z,Ed} en T_{Ed} N_{Rd}, M_{Y,Rd} en M_{Z,Rd}, V_{Y,Rd}, V_{Z,Rd} en T_{Rd}

Design values of occurring section forces Design values of section capacity or resistance

- X_{Rd}: smallest capacity including holes and imperfections.
- Also for profiles the verification on laminate or ply level is allowed.

tension

CUR recommendation 96 Edition 2017 FRP in buildings and civil engineering structures

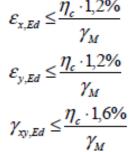
Chapter 6: Plates and Shells

• Ply level: Tsai Hill

E-LÁSS

Composites NL

Fiber


$$\frac{\sigma_{1,J,S}}{\sigma_{1,J,R}}\Big|^2 - \left(\frac{\sigma_{1,J,S} \cdot \sigma_{2,J,S}}{\sigma_{1,J,R}^2}\right)^2 + \left(\frac{\sigma_{2,J,S}}{\sigma_{2,J,R}}\right)^2 + \left(\frac{\tau_{12,S}}{\tau_{12,R}}\right)^2 = \left(\frac{1}{\gamma_m \cdot \gamma_f \cdot \gamma_c}\right)$$

Fruk :

$$\left(\frac{\sigma_{1,c,S}}{\sigma_{1,c,R}}\right)^2 - \left(\frac{\sigma_{1,c,S}.\sigma_{2,c,S}}{\sigma_{1,c,R}^2}\right)^2 + \left(\frac{\sigma_{2,c,S}}{\sigma_{2,c,R}}\right)^2 + \left(\frac{\tau_{12,S}}{\tau_{12,R}}\right)^2 = \left(\frac{1}{\gamma_m.\gamma_f.\gamma_c}\right)^2$$

- Laminate level: Simplified Strain Criterion
 - 1.2% strain limit for FRP when min. 12.5% fibre reinforcement in all main directions (0/90/45/-45). $\varepsilon_{x,Ed} \leq \frac{\eta_c \cdot 1.2\%}{\gamma}$

For UNI AXIAL loads:

Composites NL

Fibe

CUR recommendation 96 Edition 2017 FRP in buildings and civil engineering structures Chapter 6: Fatigue

- Fatigue: stiffness reduction => conversion factor
- Fatigue strength: S-N curve

• Fatigue life:
$$\log(N) = m \cdot \log\left(\frac{\gamma_{Mf} \cdot \gamma_M \cdot \sigma_{max}}{\eta_c \cdot B}\right)$$

- N= number of cycles
- m = regression parameter (slope)
- Variable amplitude loads may be considered as a combination of constant amplitude loads using Rainflow counting.

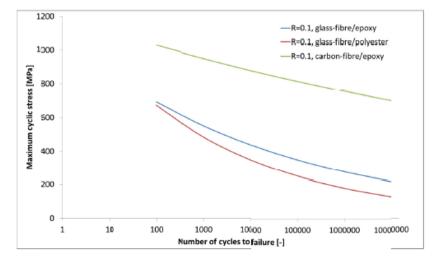
• Miner's rule:
$$D = \sum_{i=1}^{M} \frac{n_i}{N_i} \le 1$$
,

E-LÁSS

europ

Composites NL

FiberCo


CUR recommendation 96 Edition 2017

FRP in buildings and civil engineering structures

<u>Chapter 6: Fatigue – Reference values</u>

Table 11.16 - Reference values for regression parameters a and *B* for UD laminate.

UD non-crimp	Glass/epoxy UD non-crimp	Glass/polyester	Carbon/epoxy
fabric	fabric	UD non-crimp fabric	UD non-crimp fabric
	a, B	a, B	a, B
<i>R</i> = -1	-10, 600*(V _f /0.55)	-9, 700*(V _t /0.55)	-15,900*(V _f /0.55)
<i>R</i> = 0.1	-10, 1100*(V _t /0.55)	-7, 1300*(V _f /0.55)	-30, 1200*(V _f /0.55)
<i>R</i> = 10	-18, 750*(V _f /0.55)	-	-

$$\log(N) = m \cdot \log\left(\frac{\gamma_{Mf} \cdot \gamma_{M} \cdot \sigma_{\max}}{\eta_{c} \cdot B}\right)$$

CUR recommendation 96 Edition 2017 FRP in buildings and civil engineering structures

Chapter 7: Serviceability Limit State design

- SLS deals with the functionality and durability of the structure
- Deformation due to variable load
 => a measure for the response
- Deformation due to permanent load (creep)
 => water ponding, sagging
 - Design guidance is generic
 => Client specifications are necessary!

SLS requirements (deflection or comfort) are determining for FRP design => materials, costs , environmental impact

FRP in buildings and civil engineering structures

Chapter 10 / Annexes Quality checks

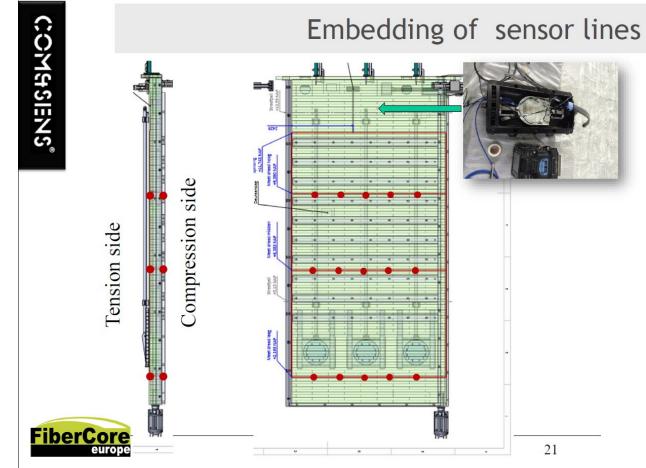
- Material checks
- Qualified personnel
 - FRP Supervisor at relevant activities
 - Executing personnel
 - Training / instruction protocols to be provided
- QA- factory protocols
 - aspects to be addressed in QA protocols
 - Future: look at Class work shop certificates
- project specific:
 - FAT tests (project specific)
 - SAT tests (measurement of deflection and response as built: e.g. reference for health monitoring)
 - Optional: monitoring by structural health monitoring technology

E-LÁSS

europe

Composites NL

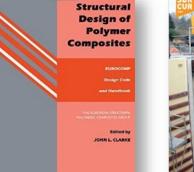
FiberCore



CUR recommendation 96 Edition 2017

FRP in buildings and civil engineering structures

Chapter 10 / Annexes Quality checks



FRP in buildings and civil engineering structures

Annex J: points of attention to educate inexperienced clients, owners, contractors

Design rules, Testing & Attention for FRP critical aspects!

FRP: ready for use!

Acknowledgment: co-author

Liesbeth Tromp

- Lead engineer FRP @ Royal HaskoningDHV
- Infrastructure and architecture
- Technical Coordinator & co-author CUR96 FRP structures
- Representative of Netherlands in TC250-WG4 (Eurocode FRP committee)
- 1997 MSc Aerospace Engineering, TU Delft
- > 20 years of experience in FRP & lightweight engineering
- Guest lecturer TU Delft (Civil Engineering, Architecture)
- Post Academic FRP course for professionals
- With TU Delft: ProfEd online course FRP for infrastructure

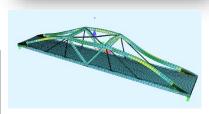
More info on CUR96:

- ☑ <u>liesbeth.tromp@RHDHV.com</u>
- +31-68 353 03 20

E-LÁSS

europe

Composites NL


FiberCore

RAMSSES

InfraCore Company

Contact

- Office address: Marconistraat 16, 3029 AK Rotterdam /NL
- Email: info@infracore-company.com
- Internet: <u>www.infracore-company.com</u>
 - Phone: 0031-624628868

