LIGHTWEIGHT RESEARCH FOR MARITIME APPLICATIONS AT THE LBF

Fraunhofer Institute for Structural Durability and System Reliability LBF

Fraunhofer LBF

4 Research Divisions

Fraunhofer LBF in Darmstadt

Darmstadt City site

Facts & figures

Annual statement 2017

Staff

- 396 at Fraunhofer LBF
- 53 at TU Darmstadt

Budget 2017 28.19 Mio €

Facilities

- Office facilities: ca. 6.300 m²
- Lab facilities: ca. 11.560 m²

Promotions and Master theses 2016

15 PhD & 47 Master theses

Markets

- Automotive and supply industry
- Rail vehicle industry
- Aviation
- Shipbuilding
- Mechanical and plant engineering
- Special machine construction
- Power engineering
- Chemical industry

Why shipbuilding?

Key technologies as defined in the WATERBORNE SRA

- Smart and Autonomous ships
 - Internal and external monitoring tools
 - **New sensors** and real-time collection of ship parameters
 - Integrated safety and security systems
- Fire resistance and prevention
 - Use of new materials
- Innovative and smart materials and combinations
 - More extensive use of composites
 - New advanced composites (fire resistant)
- Increased vessel survivability
 - Damage stability (tools to evaluate hull resistance)
 - Damage stability (e.g. watertight integrity)
 - Test and validation of monitoring system

Why shipbuilding?

https://magazine.damen.com/editors-choice/composite-materials-for-the-next-generation-of-ship-owners/

Lightweighting has some drawbacks

- More sensitive to damages and degradations
- More sensitive to noise and vibration (NVH)

- ightarrow Health and Usage Monitoring, SHM
- ightarrow Active noise and vibration control

Systems-based research

Examples

Lightweight Structures

through optimised short fibre reinforced plastics ...

Development of Flame-Retardant Plastics

Plastics Flame Retardancy: Goals and Tasks

- Characterization and assessment of flame-retardant plastics (thermoplastics, thermosets, elastomers, composites)
- Synthesis, development, and optimization of new flame retardants and plastic formulations
- Processing of flame-retardant polymers and optimization of the formulations
- Research and development projects for fire-resistant plastics or flame retardants and formulations as well as testing

Intermediary between producers of flame retardants and compounders through to the OEMs

Systems-based research

Examples

Design, manufacturing and test of sensorized composite panels (prepreg autoclave)

Verification and Qualification of sensor systems with nondestructive testing

Flight test of a composite panel with 50 fiber optic as well as piezo sensors

Systems-based research

Examples

Funded projects in context of shipbuilding (finished)

Fokus on vibration control

Example Aktos

Control of torsional vibrations in drive trains

- Validation in a motor yacht
 - V6-motor with 441 and 449 kW, resp.
 - Gearbox in pod design
 - Only one drive train with active measure
- Excitation through the propeller

Example Aktos

Control of torsional vibrations in drive trains

Funded projects in context of shipbuilding (MARTEC)

Smart Propulsion Systems (SmartPS)

- Design and validation of an energy harvesting concept
 - Energy recovery from torsional vibrations
 - Damping of the torsional vibrations
- Strategy for the efficient operation of the drivetrain under rough sea
- Experimental analysis and system validation

Funded projects in context of shipbuilding (MARTEC)

Reliable and Autonomous Monitoring system for Maritime Structures

- Monitoring concepts for maritime structures to optimise maintenance and to increase safety
- Accelerating the implementation of composite structures in shipbuilding through monitoring of loads and failures with smart sensors
- Increased efficiency through new designs and advanced manufacturing
- Transfer to offshore applications

Reliable and Autonomous Monitoring system

Rudder shaft solution

Hull solution

FBG sensors placement in the CreeYacht

Alternatives

piezoelectric layers

