# LIGHTWEIGHT MATERIALS

FROM A SURVEYOR'S POINT OF VIEW

## WELCOME



E-LASS

E-Lass Annual Conference 26 – 27 June 2018 Pornichet - France







#### Antwerp Maritme Acedemy

Deck Officer Jan de Nul

Polymer Maritime Development

2008 - 2012

2012 - 2017

### LET'S MEET A small introduction



#### Conferences

#### Marine Surveyor DP Survey Group

2015-2018

2015 & 2017

2018 - present

AND A REPORT OF A PARTICULATION OF A PARTIC



## About DPS

DPS is an **international** organisation of experts engaged in claims and risk management services to both the marine and non-marine insurance industries.

All activities are coordinated from our **central hub** in Antwerp.



## Goals

- Accurate and efficient investigations
- Crystal clear reports
- Technical competence
- Social skills
- Sense of urgency
- Focus on solutions.



## LET'S MEET DPS

#### A word about DP Survey Group

## Departments

- General Management
- Marine Department
- Non Marine Department
- International Desk
- International Fruit Desk
- Legal Department
- Accountancy-Administration
- DPS Africa



## Clients

- International Insurance market
- P&I Clubs
- H&M Underwriters
- Carriers and Traders





## Cargo related surveys

- Pre-shipment surveys
- Loading and discharging surveys
- Stowage, lashing and securing surveys
- Cargo damage surveys and quality control







## MEET OUR MARINE DEPARTMENT?

#### Our Services

## ⊘ Nautical surveys

- On- and off-hire surveys
- Condition surveys
- Bunker surveys
- Pre-loading condition surveys
- Hatch cover surveys including ultrasonic testing
- Damage surveys
- Ship repair surveys







# 

Probability X Consequences

# 

- Pre-shipment surveys •
- Loading and discharging surveys •
- Condition surveys •
- Loss prevention •

•

Probability X Consequences

# RISK= Probability X Consequences

- Pre-shipment surveys
- Loading and discharging surveys
- Condition surveys
- Loss prevention

• ...

- Damage surveys mitigation of loss
- Ship repair surveys
- ...







## USE OF LIGHTWEIGHT MATERIALS

"How can we control the risks involved with the implementation oflightweight materials in the maritime industry?"

"How can we reduce the risks involved with the implementation oflightweight materials in the maritime industry?"

#### **Current applications of composites:**

- Hull
- Accommodation
- Hatches, doors
- Pipes
- Tweendecks
- Propeller blades
- Walking grids
- Railings and ladders
- Bearings





Figure 11: Distribution of casualty events with a ship

Damage to ship or equipment

#### EQUIPMENT DAMAGE

2011

Source: EMSA - annual overview of marine casualties and incidents 2017

### 1<sup>st</sup> Example: Equipment Damage A point of view





#### ABOUT THE MATERIAL

- Material used (fibre? Resin?)
- Fibre oriëntation (isotropic, uni-directional,...)
- Fibre length
- Additives and fillers (UV resistance, fire retardants,...)
- Production process (vacuum infusion, pultrusion,...)

=> there is no such thing as a "standard" composite

## 1<sup>st</sup> Example: Equipment Damage

#### A point of view



**FRP doors ACCEDOO** 





#### IN CASE OF DAMAGE

There is no such thing as a "standard" composite

ł,

**Completely different behavior compared to steel** 

(No yield zone before fracture)

In case of equipment damage:

- Challenging to inspect
- Product specific repair techniques
- Need for service engineer

## 1<sup>st</sup> Example: Equipment Damage

#### A point of view



FRP working platform



#### IN CASE OF DAMAGE

#### Challenging to inspect

- Residual strength determination
- Material knowledge (wide range, IP)
- Non-visible internal damage
- Verification of equal strength after repair
- Product specific repair techniques
  - Local vacuum infusion, hand lay-up
  - Strict environmental conditions
- Need for service engineer
  - Ship's crew is not trained or equipped
  - Shipyards or repairers do not have the required knowledge or skills

## 1<sup>st</sup> Example: Equipment Damage



FRP Fast Ferry (Brødrene AA)



#### IN CASE OF DAMAGE

#### Challenging to inspect

- Residual strength determination
- Material knowledge
- Non-visible internal damage
- Verification of equal strength after repair
- Product specific repair techniques
  - Local vacuum infusion, hand lay-up
  - Strict environmental conditions
- Need for service engineer
  - Ship's crew is not always trained or equipped
  - Shipyards or repairers do not have the required knowledge or skills



**Complex case!** Worldwide coverage?

## 1<sup>st</sup> Example: Equipment Damage







#### POINT OF VIEW

#### $\Rightarrow$ Smart composite applications in the maritime sector:

#### **Consider "Damage and repair" as a design criteria**

- Is it likely that my product will encounter damage? (weather deck vs. accommodation?)
- Can my product be disassembled easily?
- Can I design a modular/ sectional application?

## 1<sup>st</sup> Example: Equipment Damage

#### A point of view



FRP car decks on mv "Siem Cicero"







Figure 11: Distribution of casualty events with a ship

Damage to ship or equipment

#### RISK OF FIRE

2011

Source: EMSA - annual overview of marine casualties and incidents 2017

## 2<sup>ND</sup> EXAMPLE: RISK OF FIRE A point of view





#### CURRENT APPROACH

Current safety rules and regulations for construction and fire fighting:

#### **SOLAS Chapter II-1 and II-2**

#### **FSS Code**

- Subdivision in compartments to withstand fire for certain time (A60 A30) •
- Materials to be used (**non-combustible**)
- Fire detection
- Fire fighting

Non-combustible material is a material which neither burns nor gives offflammable vapours in sufficient 33 quantity for self-ignition when heated to approximately 750°C, this being determined in accordance with the Fire Test Procedures Code.

## 2<sup>ND</sup> EXAMPLE: RISK OF FIRE





#### CURRENT APPROACH

**SOLAS Ch II-2 Regulation 17: Alternative designs (+MSC/Circ1002)** 

Methodology to prove equal safety for a certain design

(Approval for a certain design, not for a material!!)

## 2<sup>ND</sup> EXAMPLE: RISK OF FIRE





#### POINT OF VIEW

#### **Composites do have a complete different fire behavior compared to steel**

- Combustible vs. non-combustable
- Insulating vs. conducting

Currently, type approval (reg. 17) is achieved by proving equal safety based on rules for steel constructions!

## 2<sup>ND</sup> EXAMPLE: RISK OF FIRE





#### $\mathsf{C} \ \mathsf{O} \ \mathsf{N} \ \mathsf{C} \ \mathsf{L} \ \mathsf{U} \ \mathsf{S} \ \mathsf{I} \ \mathsf{O} \ \mathsf{N}$

How to control the risk of fire when implementing composites:

#### => Evaluate all aspects including:

- fire containment
- fire fighting techniques
- Fixed fire fighting systems
- detection

#### **Big step in controlling the risk:**

MSC.1/Circ.1574 – Guidelines for use for use of FRP elements

within ship structures

## 2<sup>ND</sup> EXAMPLE: RISK OF FIRE



## THANK YOU



E-LASS

E-Lass Annual Conference 26 – 27 June 2018 Pornichet - France

## Thank you for your attention Get in Touch With Us

Send us a message or visit us whenever you like

Bert Delbaere Marine Surveyor DP SURVEY GROUP Baarbeek 1, 2070 Zwijndrecht (BELGIUM) **T**: +32 3 295 10 50 **M**: +32 479 97 11 67 **E**: bert.delbaere@dpsurveys.com



International loss adjusters & surveyors