Stronger, Lighter, Smarter

The Sandwich Concept

Elass Meeting - Pornichet - June 2017

Valerio Corniani C.Eng MRINA – Diab Global Marine Manager

From Panel to Beam

Stress distribution in a homogenous cross section

01/18/16 Presentation name

Structural Sandwich

Young Modulus of skin material is MUCH HIGHER than modulus of core $E_f >> E_c$

Bending of a sandwich

Bending of a sandwich

Top skin subjected to compression and bottom skin subjected to tension whereas the core is subjected to shear

Sandwich – Flexural Rigidity

$$D = \int E z^{2} dz = 2 \cdot \frac{E_{f} t_{f}^{3}}{12} + 2E_{f} t_{f} \left[\frac{d}{2} \right]^{2} + \frac{E_{c} t_{c}^{3}}{12}$$

Stiffness contribution from the two skins bending around their individual neutral axis

Sandwich – Flexural Rigidity

$$D = \int E z^{2} dz = 2 \cdot \frac{E_{f} t_{f}^{3}}{12} + 2E_{f} t_{f} \left[\frac{d}{2} \right]^{2} + \frac{E_{c} t_{c}^{3}}{12}$$

Stiffness contribution from the two skins being removed from the centre of bending – Steiners theorem

Sandwich – Flexural Rigidity

$$D = \int E z^{2} dz = 2 \cdot \frac{E_{f} t_{f}^{3}}{12} + 2E_{f} t_{f} \left[\frac{d}{2} \right]^{2} + \frac{E_{c} t_{c}^{3}}{12}$$

Stiffness contribution from the core material bending around its own neutral axis

Sandwich – Flexural Rigidity - Example

$$D = \int E z^{2} dz = 2 \cdot \int_{10}^{3} + 2E_{f} t_{f} \left[\frac{d}{2} \right]^{2} + \int_{10}^{3} D = \frac{E_{f} t_{f} d^{2}}{2}$$

$$10.575 + 35.62.3 + 39.66 = 3615.9 \text{ Nmm}^{2}/\text{mm (width)}$$

$$1800 \text{ g/m}^{2} \text{ 0/90 biaxial glass} \qquad E_{f} = 17.8 \text{ GPa}$$

$$20 \text{ mm H60} \qquad t_{f} = 1.70 \text{ mm}$$

$$1800 \text{ g/m}^{2} \text{ 0/90 biaxial glass} \qquad E_{c} = 58.5 \text{ MPa}$$

Assume that the skins are very thin in relation to the core thickness and that the core material is weak/soft in relation the the skins.

Sandwich – 3 ways to increase flexural rigidity

$$D=\frac{E_f t_f d^2}{2}$$

- 1. Increase the stiffness of the skins, change from glass to carbon fibres / aluminium or steel
- 2. Increase the thickness of the skins
- 3. Increase the core thickness

• Increasing the core thickness is by far the most weight efficient way to increase rigidity of a sandwich!

Bending of a sandwich – strain distribution

Hooke's Law:
$$\sigma_i = E_i \cdot \varepsilon_i$$

But ...
$$E_f \gg E_c$$

Bending of a sandwich – stress distribution

$$\sigma_f = \frac{M_x y}{D} \cdot E_f \approx \frac{M_x}{t_f d}$$

6/29/2018

Bending of a sandwich – shear distribution

No approximations

$$E_c \ll E_f$$

$$E_c \ll E_f$$
 $E_c \ll E_f$ and $t_c \gg t_f$

$$\tau_{i}(z) = \frac{T_{x} \cdot B(z)}{D}, \ \tau_{c}(z = 0) = \frac{T_{x}}{D} \left(E_{c} \cdot \frac{t_{c}}{4} + E_{f} \cdot t_{f} \cdot \frac{d}{2} \right) \qquad E_{c} << E_{f}$$

$$\tau_{c} \approx \frac{T_{x}}{d}$$

The Sandwich Concept

- Weight
- Strength
- Stiffness

Design of Sandwich Structures

Skins:

- Tensile and compressive strength
- Stiffness of the skin in compression

Core:

- Shear strength
- Compressive stiffness
- Shear stiffness
- Compressive strength

