### Composite Tween Deck Prototype

#### JiP Project Presentation and Results

Presented by:

Ragnar E. Hansen, Oshima Shipbuilding Co. Ltd.
Arnt Frode Brevik, Compocean
Philippe Noury, DNVGL

E-LASS Conference in Pula October 11, 2017









### List of contents

- Introduction: General about the Joint Industry Project
- What is a tween deck
- About the project activities
  - 1. Design of tween deck
  - 2. Prototype construction
  - 3. Testing
- Conclusions
- Q&A session

Ragnar E. Hansen, Oshima Shipbuilding

Arnt Frode Brevik, Compocean

Philippe Noury, DNVGL









## JiP Project Objectives

The prototype shall confirm the main aspects of construction of the final panels

- The testing in laboratory shall confirm the material properties
- The prototype testing shall confirm the theoretical strength calculations and the quality of the construction
- The production method shall be confirmed as suitable
- Impact strength and repair methods shall be demonstrated.
- The photo/video documentation and brochure material of the physical model of the tween deck shall create interest and confidence to potential customers.









#### JIP Partners

#### Oshima Shipbuilding Co. Ltd.

 A shipbuilder for dry bulk carriers. Located in Nagasaki Prefecture, Japan

#### **DNVGL**

 Purpose is to safeguarding life, property and the environment. World largest Class Society

#### Compocean

 An independent supplier of composite solutions for the onshore and offshore industry

#### **IKnow Machinery**

Builder of ship cranes, hatch covers and tween decks. Fully owned by Oshima









## Tween decks in selected holds



#### Large variation in type of cargo













# The ship with tween decks





The ship:

- $\Box$  L = 200 m
- □ DWT= 62.8 k









## Design loads

- □ Uniform cargo loading 3.0 t/m<sup>2</sup>
- Ship acceleration in waves
- Selfweight
- Green-sea loads when panels are stored on deck
- Lifting/moving of decks









## The tween deck panel

Size adapted to deck crane lifting capacity (40 tons)



#### Overall dimensions:

L = 18.20 m

B = 13.62 m

H = 1.325 m









# Steel brackets at end supports











# Tween deck end support











# Properties of laminates

| GRP<br>laminate<br># | Location                  | Fibre direction (degrees) | % of fibre in each fibre direction | E <sub>1</sub> (MPa) | E <sub>2</sub> (MPa) | V12  | G <sub>12</sub> (MPa) |
|----------------------|---------------------------|---------------------------|------------------------------------|----------------------|----------------------|------|-----------------------|
| 1                    | Top plate                 | 0-90-45-45                | 40-40-10-10                        | 23202                | 23202                | 0.19 | 4736                  |
| 2                    | Corrugation bottom flange | 0-90-45-45                | 40-40-10-10                        | 23202                | 23202                | 0.19 | 4736                  |
| 3                    | Corrugation web           | 0-90-45-45                | 10-10-40-40                        | 14135                | 14135                | 0.21 | 9944                  |
| 4                    | End walls                 | 0-90-45-45                | 25-25-25                           | 17890                | 17890                | 0.31 | 6590                  |

| GRP<br>laminate<br># | Ultimate<br>strength -<br>tension<br>(MPa) | Ultimate<br>strength-<br>compression<br>(MPa) | Ultimate<br>strength –<br>shear<br>(MPa) | Allowable<br>stress –<br>tension<br>(MPa) | Allowable<br>stress –<br>compression<br>(MPa) | Allowable<br>stress –<br>shear<br>(MPa) |
|----------------------|--------------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------------|
| 1                    | 390                                        | 400                                           | 110                                      | 137                                       | 140                                           | 38                                      |
| 2                    | 390                                        | 400                                           | 110                                      | 137                                       | 140                                           | 38                                      |
| 3                    | 220                                        | 230                                           | 250                                      | 77                                        | 81                                            | 88                                      |
| 4                    | 313                                        | 320                                           | 200                                      | 110                                       | 112                                           | 70                                      |









# FEM: Static strength analyses











## Extent of the prototype



#### Prototype extent:

- One corrugation «beam» half span, i.e 9.1m
- Steel brackets at ends
- Lifting brackets
- Laminate design and thickness as full scale tween deck









## The prototype as designed











# Prototype laminate thickness











### **Fabrication Process**

- Mould Construction
- Preparation
- Materials
- Vacuum Infusion
- Assembly









### Mould Construction



- Female moulds (mould outside product)
- Simple construction due to one-time use.
- Based on wooden construction with plywood sheets, covered with fiberglass surface and mould gelcoat.









## Preparation



- Test laminate for coupon testing
- Mould control (dimension, release agent etc.)
- Vacuum infusion test of stiffener profile
- Resin gel test









### **Materials**

- Multiaxial stitched glass fibre fabrics (0/90 balanced and unbalanced, +45/-45), area weight of 1700 and 800 grams
- Marine grade Polyester for injection molding
- Structural adhesive (Urethane acrylate)
- White topcoat









### Vacuum Infusion



- Fabric lay up
- Peel ply
- Distribution net (green flow medium)
- Resin feed lines
- Vacuum lines
- Spray adhesives
- Sealant tape
- Vacuum bag
- Vacuum pumps
- Leak detection
- Resin traps









# Vacuum Infusion Top Plate



Ready for infusion









## Vacuum Infusion Top Plate



Flow on surface and through the thickness infusion

Resin Resin flow Vacuum











### Vacuum Infusion Problems



- Bridging can cause problems and shortcut flow
- Can be controlled with resin distribution system









# Assembly











# **Assembly Gluing**













# Prototype Ready For Testing











































































### **Fabrics**

- focus on 3 types of fabrics used in fabrication
  - (0/90) bal.
  - (±45) bal.
  - (0/90) unbalanced.

| Material ID | Thickness (*) [mm] | Areal weight [g/m²] |     |     |     |     |
|-------------|--------------------|---------------------|-----|-----|-----|-----|
|             |                    | 01                  | 90  | +45 | -45 | CSM |
| Fabric F1   | 1.21               | 840                 | 857 |     |     |     |
| Fabric F2   | 0.58               |                     |     | 401 | 401 |     |
| Fabric F3   | 1.36/1.44          | 1344                | 469 |     |     | 100 |









## Basic laminates for testing

- focus on 3 types of basic laminates
  - only (0/90) bal.
  - only (±45) bal.
  - only (0/90) unbalanced.

| Laminate | Laminate specification with  | Laminate specification with        | Comments              |  |
|----------|------------------------------|------------------------------------|-----------------------|--|
| ID       | fabric reference             | orientation reference              |                       |  |
| P1       | {2*[Fabric F1]} <sup>s</sup> | {2*[0/90]} <sup>s</sup>            | about 4.8mm, 4 layers |  |
| P2       | {4*[Fabric F2]} <sup>s</sup> | {4*[45/-45]} <sup>s</sup>          | about 4.6mm, 8 layers |  |
| Р3       | {2*[Fabric F3]} <sup>s</sup> | {2*[0/ <u>90]</u> uв} <sup>s</sup> | about 5.8mm, 4 layers |  |









## Materials properties

- engineering constant and strength
  - E and G moduli, Poisson's ratio
  - longitudinal and transverse properties
  - tensile
  - compressive
  - in-plane shear
  - interlaminar shear
- glass content











### Glass content

- P1 (0/90) balanced
  - 74.6% by weight
- □ P2 (±45) balanced
  - 73.2%
- □ P3 (0/90) unbalanced
  - 71.0%













## Some typical strength values

#### □ P1 (0/90) balanced

- Long.:  $\sigma$ =559 Mpa, tension
- Trans:  $\sigma$ =310 Mpa, compression
- $\tau$ =36.4 Mpa, in-plane shear

#### □ P2 (±45) balanced

- Long.:  $\sigma$ =452 Mpa, tension
- Trans:  $\sigma$ =412 Mpa, compression
- $\tau$ =36.8 Mpa, in-plane shear













### Poisson's ratio











### Back calculations

- Ply properties back-calculated from basic laminates properties using
  - classical laminated theory
  - standard failure criteria
  - damage factor









### Static testing setup











### Strain gauge locations











### Displacement measurements

















# Calculations compare well with measurements



### **Stress** in bottom laminate: Calculated axial stress:

45-51 Mpa (Various friction assumption)

#### Measured:

- 50 MPa

#### **Deflection** of bottom

laminate:

Calculated vertical defl.:

- 38 mm
- Measured
- 33 mm









### Impact testing set-up



Mobile crane was used to lift the objects to wanted height

The drop object was released manually by pulling a line to a release mechanism

Prototype is mounted in a steel jig

The drop weights:

25 kg Drop height: 1 – 10 m

1000 kg Drop height: 0.2 – 1.25 m









# Drop tests – 25 kg object





Cut through 2 glass plies, i.e. about 2-3 mm deep.
Delamination somewhat deeper









### Drop tests – 1000 kg object



Delamination observed: interlaminar shear failure in radius web/flange











## Strain recording











### Composite tween deck benefits



- 50% weight reduction, compared to a traditional steel tween deck
- Fewer panels => Shorter handling time
- Reduced maintenance cost (composite material is noncorrosive)
- Simple and cost-effective production process => short delivery time
- Excellent impact strength
- Easy repair of small damages









### Conclusions

All objectives of the prototype JIP have been met

- Material properties better than assumed
- Calculations compare well with measurements
- Production method proven
- Impact strength is excellent
- Design verified by 2<sup>nd</sup> party (AiP from DNVGL)
- Simple repair method documented

This new design has created interest in the maritime market







