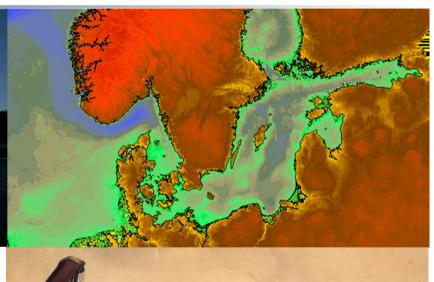

SUPERSTRUCTURES IN FRP COMPOSITES

Naval experience

Henrik Johansson

This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.



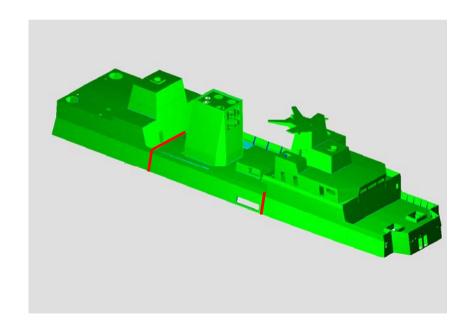
(iii) SAAB

SUPPLIER TO THE SWEDISH NAVY SINCE 1679

- Karlskrona Örlogsvarv 1679
- Kockums Mekaniska Werkstad 1840
- Musköbasen 1969
- Saab Kockums is a part of Saab since 2014

OFFICES AND FACILITIES

- Malmö
 - Design and Research
 - Stirling AIP
- Karlskrona
 - Design and Research
 - Construction
 - Maintenance, upgrades and repairs
- Muskö
 - Maintenance, support and repairs
- Singapore
 - Maintenance, support and repairs


SAAB 4

COMPOSITE VESSELS BUILT AT KOCKUMS - EXAMPLES

WHY COMPOSITE IN SUPERSTRUCTURES

- Lower structural weight, reduction by >50%
 - Lower centre of gravity
 - More pay-load
 - Higher structure Equipment higher up
- Improved signatures
 - Reduced Radar Cross Section (RCS)
 - Lowered IR signature
- Integration of sensors in the structure
- Less maintenance
- Long superstructures without sectioning/gaps

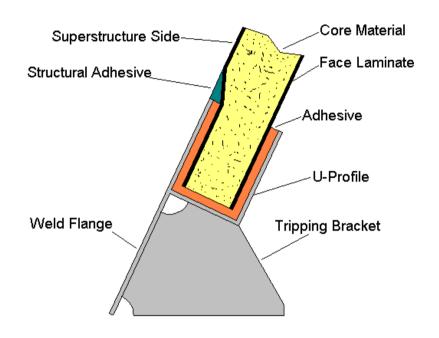
RULES AND REGULATION

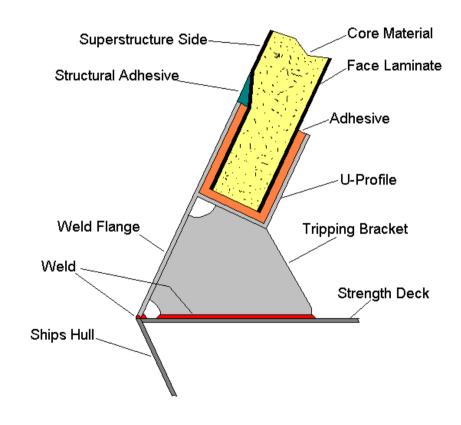
Civilian

- SOLAS → No prescriptive rules → Regulation 17
- HSC Code → prescriptive rules

Naval

- Each country decides!
- NATO Naval Ship Code (ANEP-77)
- Classification societies e.g. DNV GL


DNV GL


- Long experience in composite technology
- · Rules for ships in steel, aluminium and composite
- Naval rules
- Rules applicable for ships with steel hulls and composite superstructures
- Kockums AB has been working together with DNV for a long time
- Achieved approval (design approval and survey) for Naval projects

SAAB KOCKUMS SCOPE

- Design
- Construction
 - One piece
 - Sections/modules
 - Integrating steel structure that shall be joined to the steel structure
- Shipping
- Training
- On site support/supervision for the installation

JOINT CFRP-SANDWICH SUPERSTRUCTURE TO STEEL HULL

CFRP-SUPERSTRUCTURE FOR THE P28 PROJECT (INDIA)

Design and construction in accordance with DNV Naval Rules

 Certified and approved fire protection materials

50% weight reduction

(ship)

Length over all10)9.1m
Beam maximum	13.7 m
Maximum speed	knots
Hull material	. Steel

Superstructure (Kockums)

Length	65 m
Weight	100 tons
Material	CFRP-Sandwich

CFRP-SUPERSTRUCTURE FOR THE P28 PROJECT (INDIA)

CFRP-SUPERSTRUCTURE FOR LMV PROGRAM (SINGAPORE)

8 in order4 superstructures already delivered

Main data (ship)

Length over all	80.0 m
Beam maximum	12.0 m
Maximum speed	27 knots
Hull material	Steel

Superstructure (Kockums)

Length	18 m
Weight	20 tons
Material	CFRP-Sandwich

- Basic Design
- Detailed Design and production of superstructure
- Design and construction to DNV Naval Rules
 - Approval
 - Survey

CFRP-SUPERSTRUCTURE FOR LMV PROGRAM (SINGAPORE)

EXPERIENCE

- Easier with Naval ships than Civilian
 - Rules and Regulations
 - Conservatism
- Different level of knowledge
- Training
 - Engineers
 - Workers

