Lightweight construction applications at sea

Presentation at the LASS-conference 071031

Tommy Hertzberg

SP Technical research Institute of Sweden Fire Technology

The LASS project

3.5 year (2005-2008) Swedish ~2.6 M€ project aiming at demonstrating techniques for using lightweight construction materials at sea

Financial support by VINNOVA (Swedish Governmental Agency for Innovation Systems) and participating industries

LASS members 20 original+9 associated

Participants

LASS project targets:

- o Design of 4 (6) lightweight objects
- o Demonstration of technical solutions for <u>30%</u> <u>lighter</u> objects at <u>25% lower</u> total cost
- Demonstration of practical methodologies for using light-weight constructions at sea

Lightweight materials used

Fibre

Advantages of light-weight at sea

Economical advantages

- Dead load → paying load
- Less maintenance and fuel cost

Ecological advantages

- Less fuel/load
- Environmentally friendly waste-treatment

Stability advantages

E.g. increased stability using lightweight superstructure

Main obstacles for lightweight constructions at sea

Technical

Solvable. Largest problem is fire safety.

Tradition

 Traditions and IMO-regulations+classification rules based on steel hinders light-weight material.

Cost

Initial cost is higher. LCA/LCC neccesary for argumentation

LASS objects for study, 1-4

LASS objects for study, 5-6

Fire-hazard management at sea SOLAS, Chapter II-2

- Part A General
- Part B Prevention of fire and explosion
- Part C Suppression of fire
- Part D Escape
- Part E Operational requirement
- Part F Alternative design and arrangement
- Part G Special requirements

Philosophies for part F application

- "Total anarchy"
 - FTP
 - Active fire protection, trained staff,
- Follow prescriptive regulation and FTP as closely as possible

LASS fire safety philosophy:

Fulfil all functional construction requirements using HSCdefined elements

Steel or equivalent	Composites	Test proceedure	
A-class division	Fire resisting division 60	A.754(18) — MSC.45(65)	
B-class division	Fire resisting division 30	A.754(18) — MSC.45(65)	
C-class division	Fire restricting material	ISO 1182 — MSC.40(60)	
		(Room-Corner)	

Fire tests; large scale (A.754, MSC 45(65))

Successful composite bulkhead penetration test

LASS Fire restricting material: Room-corner

Fire tests; small scale

External composite fire: KNM Orkla

Test data for fire simulations

(data base www.sp.se/fire/fdb)

CFD-fire simulation

FDS-simulation

Egress simulations

No. of people that has not reached the assembly station

Simulex-simulation

Fire risk analysis

(by courtesy of Dag Mcgeorge, DNV)

certified composite constructions

Thermal Ceramics

- FRD 60 deck and bulkhead, 100 mm, 6.85 kg/m²
- Fire restricting material, 20-25 mm, 0.96-1.5 kg/m²

Isover/Saint-Gobain

- FRD 60 deck and bulkhead, 100 mm, 7.5 kg/m²
- FRD 30 bulkhead, 75 mm, 5.4 kg/m²
- Fire restricting material, 3.3 kg/m²

MCTBrattberg+Thermal Ceramics (LASS/SAFEDOR)

- FRD 60 penetration constructions, deck and bulkhead
- Lightweight primary deck covering (LASS/SAFEDOR)

Planned:

- Thermal ceramics: FRD 60 bulkhead test of high temp core + phenolics
- Isolamin+Isover: B-class lightweight panel tests
- Hellbergs Int: FRD 60 test, door in composite construction
- Norac+Isover: FRD 60 window tests

Weight reductions obtained within LASS

OBJECT	ORIGINAL MATERIAL	NEW MATERIAL	WEIGHT REDUCTION
Wholly composite HSC	Aluminium	GRP-sandwich	28 %
Wholly composite HSC	Aluminium	CRP-sandwich	44 %
Superstructure on HSC	Aluminium	GRP sandwich	6 %
Superstructure on HSC	Aluminium	CRP sandwich	28 %
Upper decks on ro-ro	Steel	Aluminium	45 %
Upper decks on ro-ro, optimised	Steel	Aluminium	65-70 %
Superstructure on ropax	Steel	GRP-sandwich	63 %
Superstructure, etc on freight vessel	Steel	GRP-sandwich	> 50 %
Offshore LQ	Steel	Aluminium	>30 %

Cost/LCC

- Composite HSC < aluminium HSC
- Payback time for ro-pax ~ 2 years
- Payback time for ro-ro vessel < 5 years

LASS: work in progress

- Support for commercial ship building projects:
 - Stena ro-pax with composite superstructure
 - Swedish cost guard patrol vessels in composite
- ☐ Large-scale cabin-corridoor fire tests
- ☐ Development of EU-project co-operations (SAFEDOR, De-Light Transport, SURSHIP)
- ☐ Information exchange with other research projects
- Marketing of know-how

Further information at project website:

www.lass.nu

Thank you for your attention!