Lightweight construction application at sea

LÄSS

Lightweight in Living Quarters

SP, Borås, Sweden
31-OCTOBER-2007

Peo Svärd
Emtunga Offshore AB

• What is a Living Quarter
• Fabrication - Modular concept
• Why lightweight
• Weight of a Living Quarter
• Weight saving in a Living Quarter
• Aluminum design
What is a Living Quarter?

- A living Quarter consists of:
 - Accommodation for crew
 - Safe area (Fire/gas/blast)
 - Dining area
 - Recreation
 - Central Control Room
 - Airport (baggage handling, sky lobby, etc)
 - Medical center
 - Office
 - Galley
 - Laundry
 - 20-250 POB
 - 500-4000m²
 - 250-2000 metric ton
What is a Living Quarter?

- Characteristics
 - Assembly phase
 - Load out
 - Sea transport
 - Installation (Lifting/skidding/etc.)
What is a Living Quarter?

- Load out
- Testing
- On barge
- Sea transport
- Installation
Overview – Modular concept
Why lightweight?

• Customer requirements
 – Increased capacity – POB
 – Modification
 – New regulations
 – HSE requirements (regulations/Company)

• Challenge – Cover all new requirements using same support structure.

• This trend are global – Lightweight is important
Why lightweight

• Investment in modification project in Norway are expected to increase by near 100% next 8 years.

• This trend are global – Lightweight design has a market

Modification market in Norway only

50% Production increase
25% HSE
25% Maintain integrity

Million [SEK]

0 5 000 10 000 15 000 20 000 25 000 30 000 35 000 40 000
Weight of a Living Quarter

- Weight drivers
 - Temporary construction phases
 - Blast requirements
 - Deformations
 - Fire and Gas requirements
 - Wall panels
 - External items (HD, staircases, walkways, platforms, laydown areas.)
Weight of a Living Quarter

Weight distribution in a LQ (typical)

Reference project 1000 ton Stressed skin by Emtunga

<table>
<thead>
<tr>
<th></th>
<th>Structure</th>
<th>Architectural</th>
<th>HVAC</th>
<th>EIT</th>
<th>Piping</th>
<th>Total</th>
<th>External Items</th>
<th>Helideck</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDW</td>
<td>180</td>
<td>125</td>
<td>20</td>
<td>15</td>
<td>5</td>
<td>345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>52</td>
<td>36</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>470</td>
<td>326</td>
<td>52</td>
<td>39</td>
<td>13</td>
<td>1000</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

- **Hot spots**
 - Structure
 - Temporary phases
 - Architectural – wall panels
Weight saving in a Living Quarter

- **Structure**
 - **High strength steel**
 - Applicable in a few areas since deformation is the driver.
 - Possible items is limited to lifting points/support points.
 - **Aluminum**
 - 1/3:rd weight and 1/3 stiffness - equal?
 - Form section properties that is suitable for deformation. \(d = \frac{5}{384} q L^4 / E I \)
 - The structure is approximately a factor of 3 more expensive compared to steel
 - Longer lead time
 - Require more Passive Fire Protection
 - Typical structural weight saving is 25% compared to steel. Overall weight saving is 12-13%
Weight saving in a Living Quarter

• Wall panels
 – Saving is up to approximately 3%
 – Generates questions from customer regarding references, certification, etc. but possible
 – Rule of thumb – heavy material good acoustic properties………!
 – Can be adopted for both aluminum and Steel alternative
Weight saving in a Living Quarter

- **Temporary construction phases**
 - Newer accept that temporary phases adds on structural material that are dead weight during in-place operation
 - Focus on (Spend money on):
 - temporary structures
 - Lifting aids
 - Installation aids
 - Bottom lift
 - Weight saving is ~6%
Weight saving in a Living Quarter

- **Temporary construction phases**

 - **Loadout**
 - **Sea transport**
 - **Installation**

 UPPER LATERAL SUPPORT FOR SEA FASTENING DURING TRANSPORT

 LOWER LATERAL SUPPORT FOR SEA FASTENING DURING TRANSPORT

 BASEFRAME

 VERTICAL SUPPORT FOR SEA TRANSPORT

 BARGE
Weight saving in a Living Quarter

• **Temporary construction phases**
 Bad example !!
Weight saving in a Living Quarter

- Weight saving on hot spots
 - Using aluminum structure ~13%
 - Temporary construction phases ~6%
 - Using light weight wall panels ~3%

 Total: ~22%

- It should be noted that additional weight saving is possible in the support structure.
Aluminum design

• Focus on aluminum solution and wall panels in LÄSS project
 – New structural design adopted to modular construction (Emtunga)
 – Development in conjunction with SAPA
Aluminum design

• Basic panel alternatives investigated
 – Extruded panels 400mm
 – FS welded
 – Both alternatives can be used as wall panel as well as floor panel. Final design decided in each individual project.
Aluminum design

- Basic panel alternatives investigated
 - Both alternatives meet following criteria’s.
 - Shear load of 550 kN/m
 - Blast load of 30 kN/m² as shown below
Aluminum design

- Basic panel alternatives investigated

Reference - Steel

Solid panel Alt A

Solid panel Alt B
Aluminum design

• Basic panel alternatives investigated
 – Structural calculations and production feasibility study performed by SAPA shows following
 • Possible weight saving of 40-50% in the panel
 • Possible embedded feasibility to decrease fabrication time
Emtunga Offshore AB

• Next step?
 – Improve/verify/approve PFP design
 – Detail design
 – Temporary support structure for lifting and handling of each module
End of presentation!

Questions?

Thanks for listening!