

Lightweight construction application at sea

LÄSS

**Lightweight in Living Quarters** 

SP, Borås, Sweden

31-OCTOBER-2007

Peo Svärd







- What is a Living Quarter
- Fabrication Modular concept
- Why lightweight
- Weight of a Living Quarter
- Weight saving in a Living Quarter
- Aluminum design





#### What is a Living Quarter?

#### A living Quarter consists of:

- Accommodation for crew
- Safe area (Fire/gas/blast)
- Dining area
- Recreation
- Central Control Room
- Airport (baggage handling, sky lobby, etc)
- Medical center
- Office
- Galley
- Laundry
- 20-250 POB
- 500-4000m²
- 250-2000 metric ton







# What is a Living Quarter?

#### Characteristics

- Assembly phase
- Load out
- Sea transport
- Installation (Lifting/skidding/etc.)





# What is a Living Quarter?





























































































































## Why lightweight?

- Customer requirements
  - Increased capacity POB
  - Modification
  - New regulations
  - HSE requirements (regulations/Company)
- Challenge Cover all new requirements using same support structure.
- This trend are global Lightweight is important





## Why lightweight

 Investment in modification project in Norway are expected to increase by near 100% next 8 years.



50% Production increase25% HSE25% Maintain integrity

This trend are global – Lightweight design has a market



## Weight of a Living Quarter

- Weight drivers
  - Temporary construction phases
  - Blast requirements
  - Deformations
  - Fire and Gas requirements
  - Wall panels
  - External items (HD, staircases, walkways, platforms, laydown areas.





## Weight of a Living Quarter

#### Weight distribution in a LQ (typical)

Reference project 1000 ton Stressed skin by Emtunga

|        | Structure | Archutect | HVAC | EIT | Piping | Total | Exteral | Helideck |
|--------|-----------|-----------|------|-----|--------|-------|---------|----------|
|        | Į.        | ural      |      | 100 |        |       | Items   |          |
| UDW    | 180       | 125       | 20   | 15  | 5      | 345   |         |          |
| %      | 52        | 36        | 6    | 4   | 1      | 100   |         | 6.       |
| Weight | 470       | 326       | 52   | 39  | 13     | 1000  | 40      | 60       |

#### Hot spots

- Structure
- Temporary phases
- Architectural wall panels





#### Structure

- High strength steel
  - Applicable in a few areas since deformation is the driver.
  - Possible items is limited to lifting points/support points.

#### Aluminum

- 1/3:rd weight and 1/3 stiffness equal?
- Form section properties that is suitable for deformation. d=5\*qL^4/384/E/I
- The structure is approximately a factor of 3 more expensive compared to steel
- Longer lead time
- Require more Passive Fire Protection
- Typical structural weight saving is 25% compared to steel. Overall weight saving is 12-13%



- Wall panels
  - Saving is up to approximately 3 %
  - Generates questions from customer regarding references, certification, etc. but possible
  - Rule of thumb heavy material good acoustic properties.....!
  - Can be adopted for both aluminum and Steel alternative





- Temporary construction phases
  - Newer accept that temporary phases adds on structural material that are dead weight during in-place operation
  - Focus on (Spend money on):
    - temporary structures
    - Lifting aids
    - Installation aids
    - Bottom lift
  - Weight saving is ~6%





Temporary construction phases





Temporary construction phases

Bad example !!











Weight saving on hot spots

Using aluminum structure ~13%

Temporary construction phases ~6%

Using light weight wall panels ~3%

**Total: ~22%** 

 It should be noted that additional weight saving is possible in the support structure.





- Focus on aluminum solution and wall panels in LÄSS project
  - New structural design adopted to modular construction (Emtunga)
  - Development in conjunction with SAPA





#### Basic panel alternatives investigated

- Extruded panels 400mm
- FS welded
- Both alternatives can be used as wall panel as well as floor panel. Final design decided in each individual project.





ALUMINIUMPROFIL Alternativ A ALUMINIUMPROFIL
Alternativ B





#### Basic panel alternatives investigated

- Both alternatives meet following criteria's.
  - Shear load of 550 kN/m
  - Blast load of 30 kN/m<sup>2</sup> as shown below







#### Basic panel alternatives investigated



Reference - Steel



Solid panel Alt A



Solid panel Alt B





#### Basic panel alternatives investigated

- Structural calculations and production feasibility study performed by SAPA shows following
  - Possible weight saving of 40-50% in the panel
  - Possible embedded feasibility to decrease fabrication time





- Next step?
  - Improve/verify/approve PFP design
  - Detail design
  - Temporary support structure for lifting and handling of each module





**End of presentation!** 

**Questions?** 

Thanks for listening!

