
DAMEN Cooperative Research

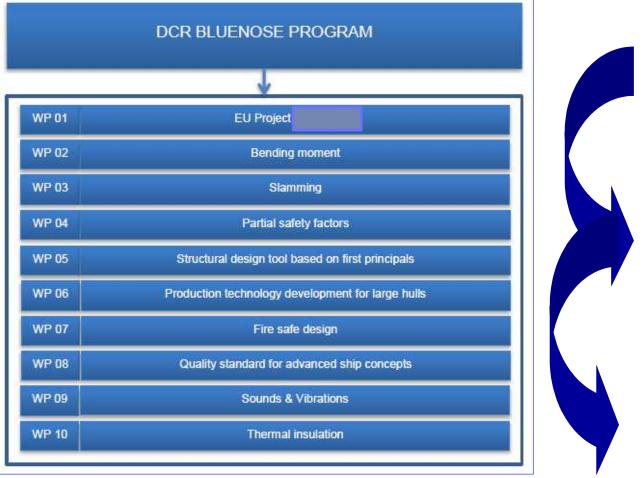
Bluenose-project

DAMEN Cooperative Research

DAMEN

BLUENOSE? DAMEN BLUE with a NOSE for BUSINESS ICONIC SYMBOL of CRAFTMANSHIP & INNOVATION

Damen Schelde Naval Shipbuilding

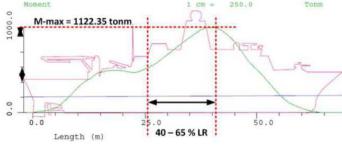

Damen Cooperative Research

DAMEN

BLUENOSE PROGRAM

Program objective:

Boost composite development within DAMEN beyond the Class Rules


COMPOSITE

Damen Schelde Naval Shipbuilding

WP 2: Wave bending moment

<u>Goal:</u>

Compare the maximum wave bending moment according to Class with a reliability based approach

Why:

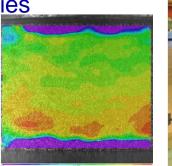
Class wave bending moment under predicts measured wave bending moment!

- Steel & aluminum ships have yielding capacity.
- Composites <u>lack yielding</u> capacity.

- > Composite ships are designed on deflection criteria rather than on strength criteria
 - margin on the failure envelope
 - Check whether this margin is sufficient to create a fail-safe design.

DAMEN

WP 3: Slamming


Goal:

Class approved & validated slamming tool for ultimate & cyclic loading on composite panels, including hydro elastic and dynamic analytical impact effects.

Why:

- Large difference between the slamming pressures of different classification societies.
- Slamming considers various dynamic factors for different areas
 - Satisfactory backing from Class is missing
- Dynamic material properties ≠ static material properties

Initial slamming tests have been performed during FLIGHT.

5

DAMEN

WP 4: Partial safety factors

Goal:

Framework of partial safety factors for 1st principles based composite design.

Why:

- Class partial safety factors are multiplied without clear fundamental background.
- Alternative materials/production processes are not reflected in the safety factors.
- Common practice in other sectors (Aerospace, Offshore wind, …).
 - Material properties
 - Production / assembly
 - Environment
 - Loading: duration, cycles
 - ▶

DAMEN

WP 5: Struct. design tool based on 1st principles Goal:

Develop a composite design tool based on first principles.

<u>Why:</u>

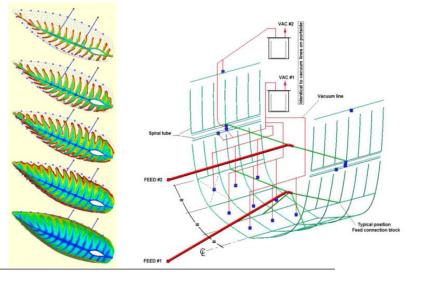
- Current Class composite equations contain some errors.
- Approach based on partial safety factors & 1st principles leads to safer & better designs.
- 1st principle Rules are common practice in offshore industry, ...
- Damen in house tools are ready for Version 2.0.
- Unique selling point.

"We're getting back to first principles ... which means we're going to have some."

Damen Schelde Naval Shipbuilding

WP 6: Production technology for large hulls

Goal:

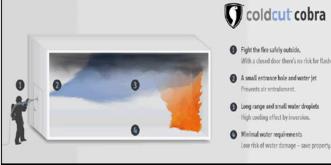

Prove that DAMEN masters the vacuum infusion process for ships > 50 meters.

<u>Why:</u>

- Overcome the infusion height (+ 6 m) in relation to infusion pressure.
- > De-gas, mix and distribute very large amounts of resin.
- Convince ourselves & our clients that DAMEN can infuse <u>A LOT</u>.
- Optimize and validate cost & weight parameters.
- Reduce the risk levels of the 1st of Class.

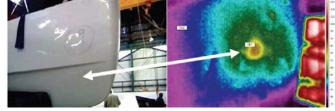
WP 7: SOLAS approved fire safety

Goal:

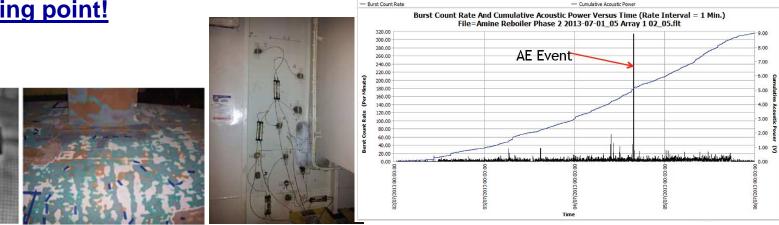

Approval of a composite ship with SOLAS requirements

Why:

- Occurrence of fire is subjective in this risk based design.
- Create a quantitative risk based design approach for different types of spaces.
- Create a balanced concept of active & passive fire protection & risk control options.
- \succ Convince Class and Flag state and get SOLAS approval on a ship.


nts air entrainment

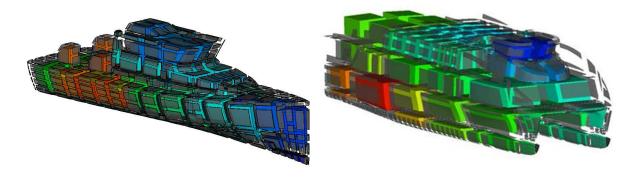
WP 8: Inspection & Monitoring of large FRP ships Goal:

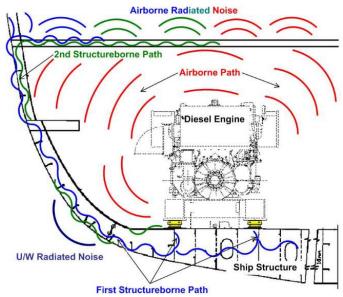

Inspection & monitoring of advanced composite hulls.

DAMEN

Why:

- Some clients require inspection & monitoring of their composite ships.
- Health monitoring techniques are risk control options in a risk based design approach
 lower safety factors // higher safety.
- Unique selling point!


DAMEN

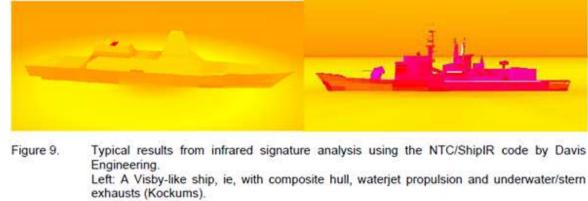

WP 9: Noise & Vibrations

Goal:

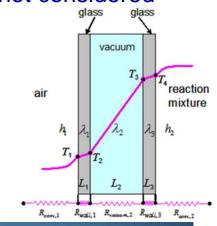
Predict the noise and vibrations levels on-board of composite ships Why:

- Challenging to predict noise & vibration levels on-board of composite ships.
- Operational composite ships show that the levels can be quite high.
- Large composite ships could only comply to Class, with additional measures.
- Unique selling point!

DAMEN


WP 10: Thermal insulation

Goal:


Use the thermal insulation benefits of sandwich composites in the HVAC design.

<u>Why:</u>

- The additional thermal insulation benefits of sandwich panels are not considered during the HVAC engineering phase.
- Quantify the reduction in cost of the HVAC system.
- Functional integration!

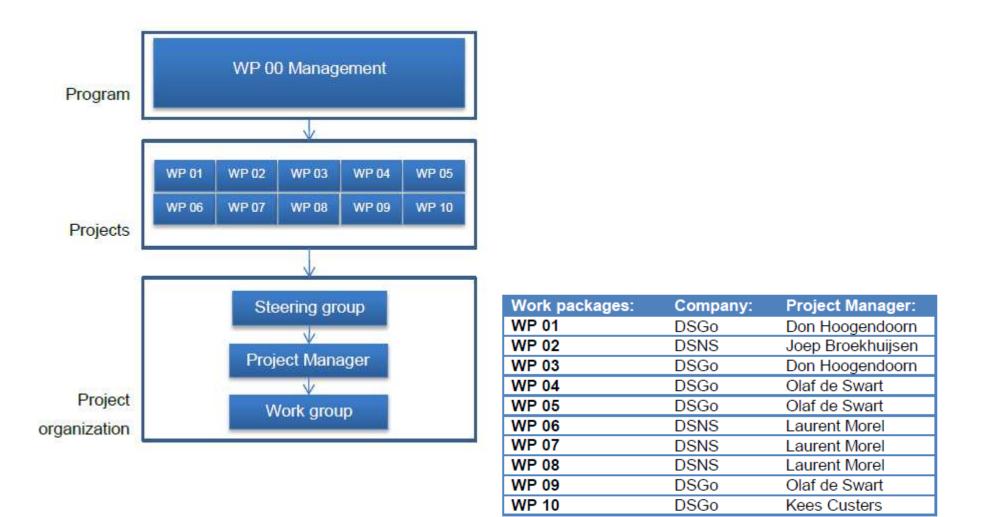
Right: A conventional ship (Doug Fraedrich, US Naval Research Laboratory).

DAMEN

WP costs

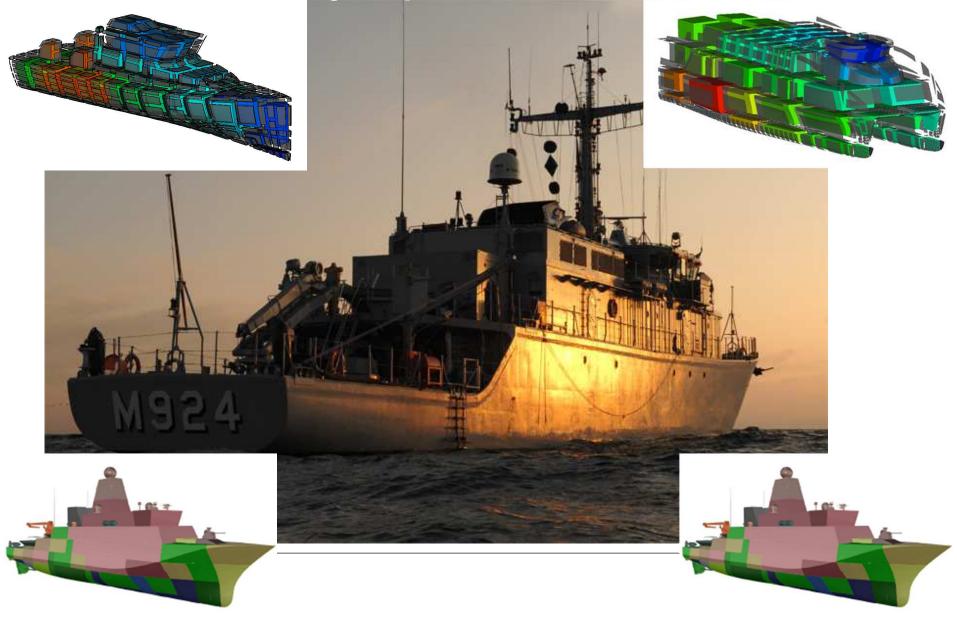
Category:	Work packages:	Cost	ts:					
General								
	WP 00: Management	50	kE					
	WP 01: EU project FIBRESHIP	0	kE					
Loads								
	WP 02: Bending moment	30	kE (*)					
	WP 03: Slamming	150	kE					
First principal based design								
	WP 04: Partial safety factors	100	kE (*)					
	WP 05: Structural design tool based on first principals	150	kE (**)					
Production								
	WP 06: Production technology development of large hulls	400	kE					
Safety								
	WP 07: Fire safe design	150	kE (*)					
	WP 08: Quality standard for advanced ship concepts	100	kE					
Integrated	design							
	WP 09: Sounds & Vibrations	150	kE					
	WP 10: Thermal insulation	20	kE (**)					
Total budg	et							
		1300 kE						
		1020 kE (*)						
		850	kE (**)					

DAMEN


Planning

			2015				2016			2017				2018				2019				
Nb:	Work packages:	Time:	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
WP 00	Management	-		•		-		•		•		-		•		•		•		•		-
WP 01	EU project	48 months																				
WP 02	Bending moment	2 months																				
WP 03	Slamming	48 months	1																			
WP 04	Partial safety factors	24 months																				
WP 05	Structural design tool based on first principals	24 months																				
WP 06	Production technology development for lager hulls	36 months																				
WP 07	Fire safe design	24 months																				
WP 08	Quality standard for advanced ship concepts	12 months																				
WP 09	Sound & Vibrations	24 months																				
WP 10	Thermal insulation	6 months																				

DAMEN


DCR - Bluenose

Project management

DESIGN STUDY REPLACEMENT MCMV [PRE-FINAL]

Thank you for your questions!

