

TECHNICAL REPORT – TR 06-08 r3

Title: Design of Panel for Fire Testing according to IMO Res MSC45(65)

Date: 2006-03-14

No. of pages: 8

Customer/	LÄSS
Application/	Marine
Country:	Sweden

Department:	TS	Project no:
Prepared by:	Carl-Johan Lindholm Geir Arnestad	Signature:
Approved by:	Björn Abrahamsen	Signature:

This report is confidential

No distribution without permission from customer

Distributed to:

Open

This document discloses commercially valuable information in which DIAB AB has proprietary rights. In consideration of its submission, the recipient agrees not to reveal, appropriate, use or copy any portion of it without specific permission. This document remains the property of DIAB AB and must be returned upon request.

To the best of our knowledge the information contained herein is accurate. Data and recommendations are the results of tests and experience but are given without liability to the supplier. As the use of this information is beyond the control of the supplier, the supplier will not be liable for any injury arising from its use. Final determination of the suitability of the information for the use contemplated is the sole responsibility of the designer and/or builder. It is strongly recommended that actual samples are manufactured and tested prior to any final determination of suitability.

Background

In the LASS project a typical deck panel and bulkhead that has a DNV approved design shall be tested in a fire test according to IMO Res. MSC 45(65). The lay up of the panels are described in this document together with calculations for the DNV approval.

Geometry

Attached drawings: "Outline dimensions fire test panel.dwg"

Span between supports = 3300 mm, (Total length is 3425 mm) Spann between stiffeners = 2000 mm (Total width is 3200 mm)

The stiffeners have a height 200 mm and a with (core thickness) of 50 mm.

Load

Deck Panel Static Pressure Pressure = 350 kg/m² Area = 3.3*4=13.2 m²

Total load =350*13.2=4620 kg Load for each "load distribution beam" = 4620/2 = 2310 kg

Bulk Head

In the fire test a vertical line load of 700 kg/m will applied on the upper edge.

Since the bulkhead is water tight it also needs to be designed to take a Uniform Load of 13 kN/m^2 . This load case is controlled in the calculations.

Temperature

The insulation is designed (se document?) so the panel and the stiffeners will not be exposed to a temperature above 80 C°. Hence the panel shall be designed for a temperature of 80 C° for 1 hour.

Manufacturing Method:

The panels and stiffeners will be manufactured with infusion in one step.

Sandwich Lay Up

The panel is made with Divinycell foam and E-glass fibre/polyester laminates. The thickness values given for the glass fibre laminas in the tables below are approximate values, since the thickness will varies with the actual volume fraction fibre, typical is 44-48 % (64 % by weight) for an infused laminate.

Deck Panel

Table 1.Lamina in the Deck Panel. *Estimated thickness.					
Material	Weight [g/ m ²]	Thickness* [mm]			
GF Biaxial 0/90	1600	1,36			
Divinycell H80		50			
GF Biaxial 0/90	1200	1,02			
Total thickness, mm		52,38			

Table 2. Lamina at the sides of the stiffener. *Estimated thickn					
Material	Weight [g/ m ²]	Thickness* [mm]			
GF Biaxial 45/-45	3*800	2,04			
Divinycell H80		50			
GF Biaxial 45/-45	3*800	2,04			
Total thickness, mm		54,4			

Table 3.	Lamina at the bottom	of the stiffener.	*Estimated thickness.
1 1010 01	Banning at the conom	of the sufferent.	Dottintated intentiess.

Material	Weight [g/ m ²]	Thickness* [mm]			
GF Biaxial 45/-45	800	0,68			
GF Uni Directional	600	0,51			
GF Biaxial 45/-45	800	0,68			
GF Uni Directional	600	0,51			
GF Biaxial 45/-45	800	0,68			
GF Uni Directional	600	0,51			
Total thickness, mm		3,57			

In the fire test panel, the stiffener shall be reinforced at the four support points. The reinforcement starts at the end of the stiffeners and is 200 mm long. The reinforcement is made by switching the core H80 to H250 and increasing the glass fibre lamina with 2400 g/m² Biaxial 0/90 that is wrapped around the edge and all the way up to the panel

Bulkhead

Table 4. Lamina in the Bulkhead. *Estimated thickness.					
Material	Weight [g/ m ²]	Thickness* [mm]			
GF Biaxial 0/90	1200	1,02			
Divinycell H80		50			
GF Biaxial 0/90	1200	1,02			
Total thickness, mm		52,04			

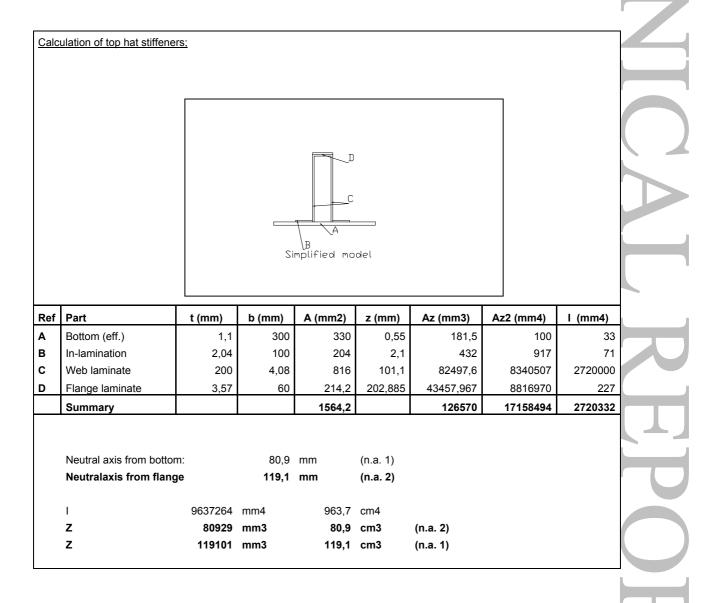
 Table 4.
 Lamina in the Bulkhead. *Estimated thickness.

Material Properties

Table 1.	Estimated Ma	terial properties:	Divinycell H8	0 at 80 C.
Matarial	Donaity	E modulus	C modulus	Shoor Strongt

Material	Density	E-modulus	G-modulus	Shear Strength
H80	80 kg/m ³	32.5 MPa	11.5 MPa	0.45 MPa

Table 2. Estimated Material properties: Glass fibre/Polyester laminates at 80 C.


Fibre skins Designation	Fib/Res Ratio	Tens. str. [MPa]	Comp. str. [MPa]	Tens. mod. [MPa]	Comp. mod. [MPa]	Flex. mod. [GPa]	Th. factor [mm/kg/m²]
E-Glas Biax (0/90)	1,66	400	320	17000	17000	17	0,85
E-glas D-biax (+/-45)	1,66	400	320	17000	17000	17	0,85
E-glas Uni (0)	1,66	650	350	30000	30000	30	0,85

SUMMARY OF I	RESULTS					
Design object: Customer:	- Deck panel "LASS"			Date: Designe	06.02.2006 r:	C
	DESIGN			PROPER	RTIES	H
Resin: Process:	lso polyester Vacuum bagged			Outer skin thickness:	1,36	mm
Adhesive:				Inner skin thickness:	1,02	mm
Designation		Layer W/T	Unit	Total thickness:	52,38	mm
E-Glas Biax (0/9 Divinycell H80(m E-Glas Biax (0/9	in) a 80 gr.	1600 50 1200	mm	Panel weight: Panel cost:	9,15	kg/m² /m²
, ,	,		5	Flexural rigidity:	26,303	Nm²/mr width
SANDWICH / LAMIN	IATE					
PROPERTIES Laminate thickness		Outer sk Inner sk		<u>1,36</u> 1,02	mm mm	
		Total thi	ckness	52,38	mm	
		Laminat	e weight	9,15	kg/m²	
		Flexural	rigidity	26,303	x10 ⁶ Nmm²/mm wid	th
		Shear st	iffness	0,603	x10 ³ N/mm width	
If the outside skin is is expected in the	s in compression failure outside	skin at a	n momen	t of 6,253	x10 ³ Nmm/mm widtl	
If the outside skin is is expected in the	s in tension failure <mark>inside</mark>	skin at a	ı momen	t of 4,753	x10 ³ Nmm/mm widtl	n
		Maximu			N/mm width	

Panel length	3200 n	m Midpanel def	lection	18,55 mm
Panel width	2000 n	m Shear deflect	tion	13,4 %
		Bending ratio	o L/	107,8
Panel pressure	3,5 k			
		Safety factor panel	at center of	5,2
		Safety factor	at end of panel	N/A
		Shear stress		0,059 N/mm²
		Safety factor	for shear	7,7

Deck stiffener - Static pressure load

Pt. 3, Ch.4, sec.7-fig.1						Rules		Sigma ultimate 400 Sigma	Мра	
		Factor	р	1	b	Max M	fig. 1	(Mpa)	Required	
Stiffener	Position	C1	(kN/m2)	(m)	(m)	(kNm)	b eff	* 0.3	Z cm3	Stiffener type
DEKK										
Stiver		8	3,5	3,2	2	9,0	300	120	75	

Design object: Customer:	Bulk head	'LASS"			Dat Des	e: signer:	2006-02-06	
	DESIGN				PRO	OPERTIES	3	
Resin: Process:	lso polyest Vacuum ba				Outer skin thickness:		1,02	mm
Adhesive:	vacuum be	igged			Inner skin thickness:		1,02	mm
Designation			Layer W/T	Unit	Total thickne	SS:	52,04	mm
E-Glas Biax (0/90 Divinycell H80)			g/m² mm	Panel weight:	:	8,48	kg/m²
E-Glas Biax (0/90)			g/m²	Flexural rigid	ity:	23,402	Nm²/m width
If the outside ski is expected in th If the outside ski is expected in th	e outside In is in tens	skin at ion failu skin at	a moment of ure	f	8,879 x10 ³ Nm 8,879 x10 ³ Nm 51,02 N/mm wi	m/mm wid		2
PANEL BENDING 50% FIXED PAN			OWN WEIGH					
Panel length Panel width	2650 2440		Midpanel de Shear deflec Bending rati	tion	n _/	51,20 6,7 47,7		
Panel pressure	13	kN/m²	Safety factor Safety factor	r at cei	nter of panel	3,2 4,5		
			Shear stress	5		0,222	N/mm²	

The safety margin for fibre failure is 3.2 (requirements 3.3), however the difference is very small hence the amount fibre is kept at 1200 g/m² which is the minimum requirement. The same discussion applies the L/50 requirement which here is L/47.

The reason for keeping the amount of fibre to 1200 g/m^2 is that the fire test shall be a worst case scenario (which it is due to the quite large panel size) with a smaller panel size the requirements above would have been fulfilled.

Bulk Head – Vertical Load 700 kg/m

A buckling calculation has been made in ESAComp.

Plate buckling and FPF

Laminate : H80 50 mm - 1200 g 0/90Plate: a = 2650 mm; b = 2440 mm;

h = 52.04 mm

Laminate load : Ny = -7000 N/m

Factor of safety : FoS^v = 1 Stability factors : SF_g = 1, SF_l = 1 Failure crit. (reinf.;core) : Max stress;Von Mises

Buckling load

$N_x = 0.00 \text{ N/m}$	$sig^{\circ}x = 0.00 \text{ MPa}$	$eps^{\circ}_x = 0.0083 \%$
$N_y = -37240.00 \text{ N/m}$	$sig^{\circ}_y = -0.72 \text{ MPa}$	$eps^{\circ}_{y} = -0.0958 \%$
N xy = 0.00 N/m	$tau^{\circ} xy = 0.00 MPa$	$gam^{\circ} xy = 0.0000 \%$

Margin to failure

MoS_buckling = 432 % MoS_buckling/FPF = 432 % Mode: Global buckling Crit. layers: -