

Regulatory Requirements & Certification of Composite Fire & Blast Protection Products for Offshore Applications

Matthew Chalk

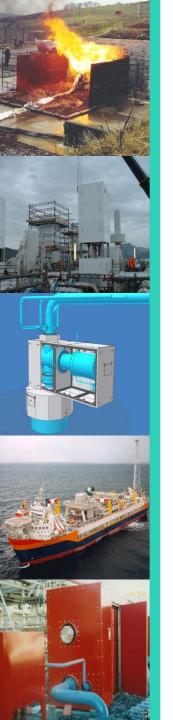
E-LASS - January 2015

Content

- Brief Introduction SCS
- ProTek® Fire & Blast protection
- Regulatory Requirements & Standards
- Certification & Testing
- Engineering Methodology
- Summary

Industry Expertise

Markets Served

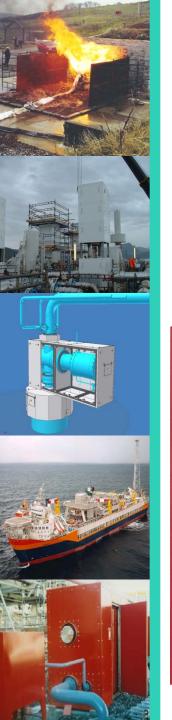

Oil & Gas
Subsea
Renewables
Marine
Construction
Automotive

Company Capability

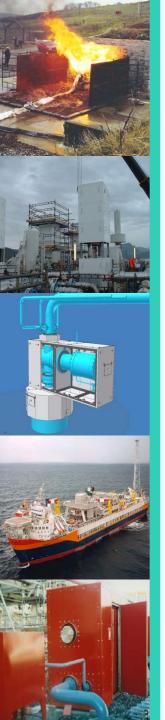
Composites Technology Expertise Custom Engineered Solutions Project Management Survey and Design skills Structural Engineering Competence Manufacturing Capability Installation and Commissioning Over 24 Years Track Record

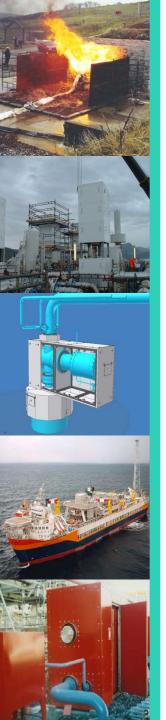
Integrated Management System

BS OHSAS 18001 – Health and Safety

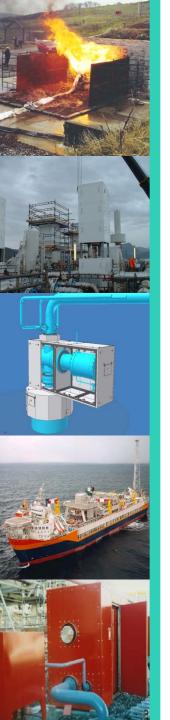

BS EN ISO 9001 - Quality

BS EN ISO 14001 – Environmental



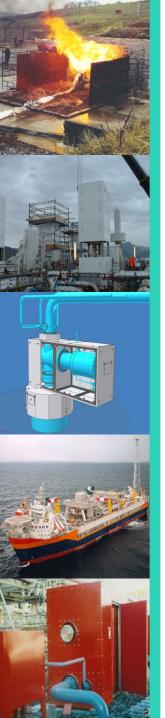

ProTek® Fire and Blast Protection

Why Protek ?



Piper Alpha Legacy

- Safety Case Facility Risk Assessment
- Risk Based Approach Not prescriptive
- Alternative Technologies considered


Composite Solution

ProTek™ Structure

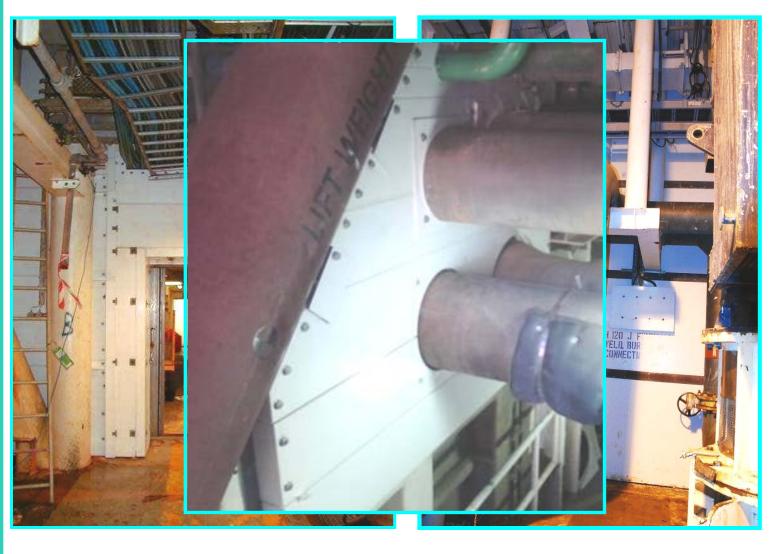
Back Glass/Epoxy Structural Laminate ——	
Phenolic Insulation Core —	
Ceramic Insulation Core -	
Front Glass/Epoxy Structural Laminate	
Ablative Coating —	
White Gelcoat	

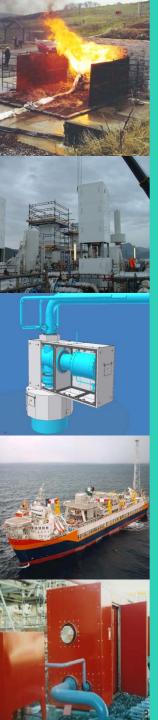
Technical Integrity

Benefits of Composites

- ✓ Blast, Fire, Thermal & Acoustic (Noise) Protection
- ✓ Low Lifecycle Cost Zero maintenance
- √Simple installation Zero hot work
- ✓ Low weight HSE and Access
- ✓ Pre-made and trial assembled
- √ Versatile design
- ✓ Robust

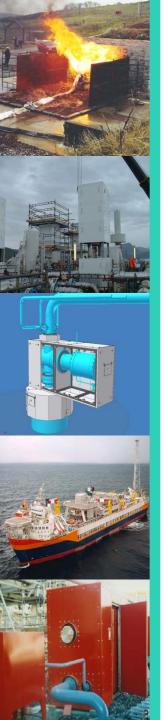
Equipment Enclosures



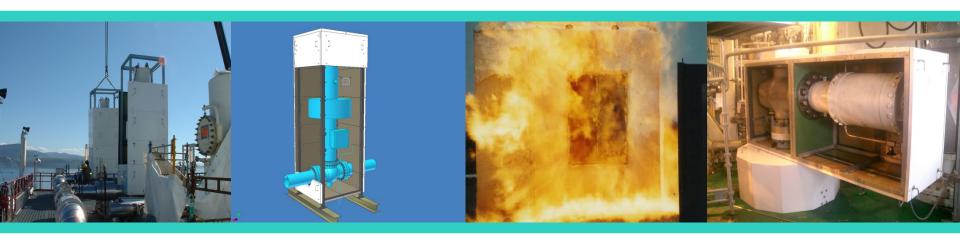


Fire and Blast Walls

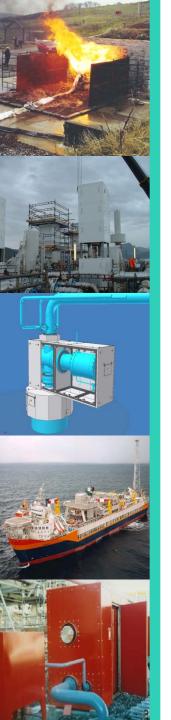
Industry Experience


Structural Steel PFP Cladding © SCS

Industry Experience


Pipeline and Flange Protection © SCS

Industry Experience



Regulatory Requirements & Standards

Regulatory Process

Government Influence / Response

Legislation – Company Compliance

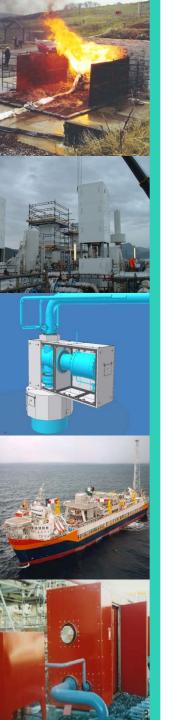
Standards – Establish Acceptance Level

Classification Society

Specifications – Detail Requirements

Classification Society

Certification – Product Compliance


Classification Society - Certification

Quality Standards – Repeatability

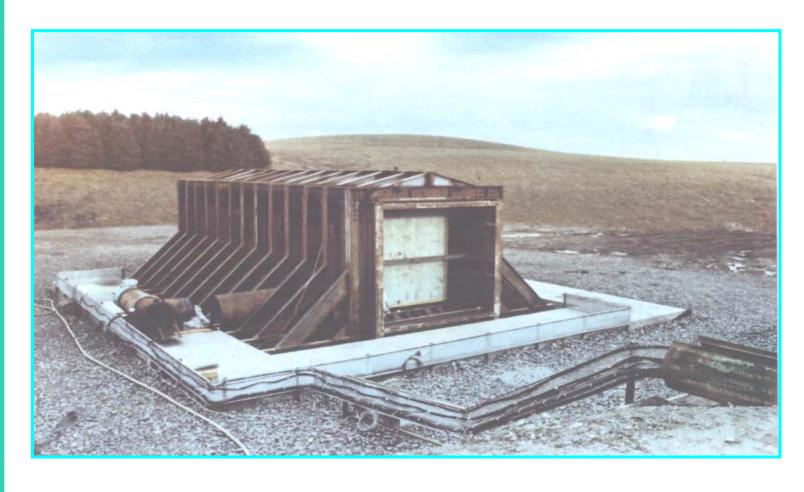
Classification Society – Audit (QA)

Procedures – Traceability

Classification Society – Inspection (QC)

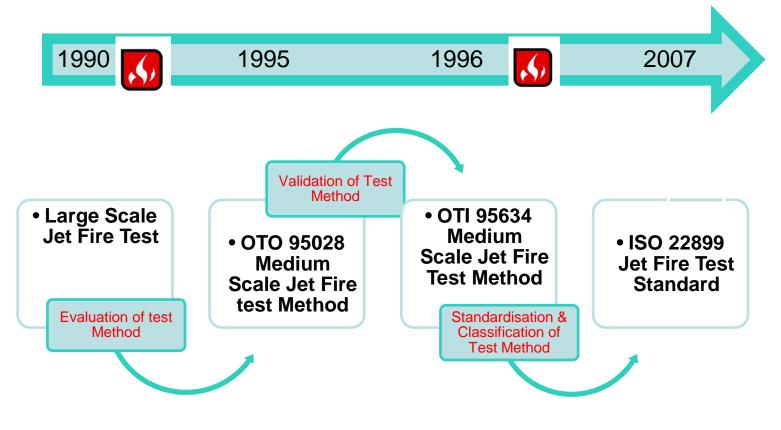
Regulatory Standards

International Standards eg. ISO, NORSOK National Standards eg. ASTM **Test Methods & Classification Company Standards & Specifications Hierarchy of Requirements** Agreed interpretation = Key to Success



Certification Requirements & Testing

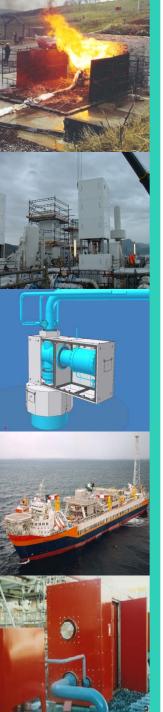
Explosion



Technical Integrity

ISO 22899 Compliance

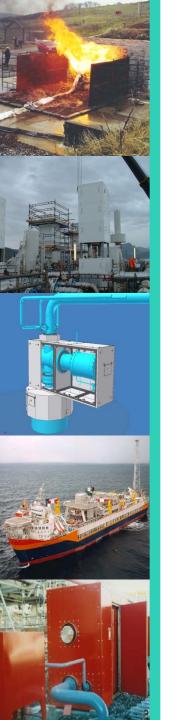
= SCS Certification Testing


Fire

Technical Integrity

Product Testing

PRODUCT TESTING & CERTIFICATION


Test	Standard	Testing Organisation	Product Type	Test Report No.	Level Achieved	Certification Details
Jet Fire	Large Scale Jet fire after blast Gas Release Rate 3kg/s (10Te / hr),	British Gas (Advantica)	ProTek™ Fire / Blast Wall Panel	ERS R. 4801	Pass	Lloyd's Register Ref. CSD/SVS/FIRE/D GG/2556
Jet Fire	OTI 95634 (now ISO 22899)	HSL Buxton	ProTek™ Enclosure Panel	PS/98/02	Pass	Lloyd's Register witness testing
Jet Fire	Large Scale	British Gas (Advantica)	ProTek™ moulded ESDV enclosure and Actuator box	ERS R. 4701	Pass	
Blast	0.5 to 1.7 bar Six blast tests	British Gas (Advantica)	ProTek™ Fire / Blast Wall Panel	ERS R. 4807	Pass	Lloyd's Register Ref. CSD/SVS/FIRE/D GG/2556
Fire	Lloyd's Register Classification for Offshore Installations NPD Hydrocarbon Fire Test Curve	SGS Yarsley	ProTek™ Fire / Blast Wall Panel	J88282/2	H120	Lloyd's Register Ref. SVG/F92/272
Fire	Lloyd's Register Classification for Offshore Installations NPD Hydrocarbon Fire Test Curve	SGS Yarsley	ProTek™ Fire / Blast Wall Panel incorporates hatch closure and pipe penetration	J88282/3	H150	Lloyd's Register Ref. SOU 120851/1
Fire	BS476 Part 20: 1987 NPD Hydrocarbon Fire Test Curve	Warrington Fire Research	ProTek™ Fire / Blast Wall Panels with Double Butt strap joint	Warres No: R11927	H120	
Fire	Lloyd's Register Classification for Offshore Installations NPD Hydrocarbon Fire Test Curve	Faverdale Technology Centre	Thin Wall H60 Fire Wall Panel	FTCR/93/007	H60	Det Norske Veritas (DNV) Ref. F- 12501
Fire	Hydrocarbon Fire Resistance Test FRS 14-84	SGS Yarsley	ProTek™ Fire / Blast Wall Panel	J92313/1	H60	Lloyd's Register Ref. SOU 320009/1
Fire	Hydrocarbon Fire IMO Res. A754(18)	BRE Borehamwood	ProTek™ Under Deck and Walkway Panel	TE 203966	H60	
Fire	Hydrocarbon Fire IMO Res. A754(18)	LPC, Borehamwood	ProTek™ Fire / Blast Wall Panel	TE91682	H60	

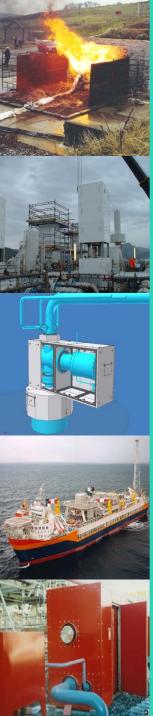
PRODUCT TESTING & CERTIFICATION

Test	Standard	Testing Organisation	Product Type	Test Report No.	Level Achieved	Certification Details
Jet Fire	Large Scale Jet fire <u>after</u> blast Gas Release Rate 3kg/s (10Te / hr),	British Gas (Advantica)	ProTek™ Fire / Blast Wall Panel	ERS R. 4801	Pass	Lloyd's Register Ref. CSD/SVS/FIRE/D GG/2556
Jet Fire	OTI 95634 (now ISO 22899)	HSL Buxton	ProTek™ Enclosure Panel	PS/98/02	Pass	Lloyd's Register witness testing
Jet Fire	Large Scale	British Gas (Advantica)	ProTek™ moulded ESDV enclosure and Actuator box	ERS R. 4701	Pass	
Blast	0.5 to 1.7 bar Six blast tests	British Gas (Advantica)	ProTek™ Fire / Blast Wall Panel	ERS R. 4807	Pass	Lloyd's Register Ref. CSD/SVS/FIRE/D GG/2556
Fire	Lloyd's Register Classification for Offshore Installations NPD Hydrocarbon Fire Test Curve	SGS Yarsley	ProTek™ Fire / Blast Wall Panel	J88282/2	H120	Lloyd's Register Ref. SVG/F92/272
Fire	Lloyd's Register Classification for Offshore Installations NPD Hydrocarbon Fire Test Curve	SGS Yarsley	ProTek™ Fire / Blast Wall Panel incorporates hatch closure and pipe penetration	J88282/3	H150	Lloyd's Register Ref. SOU 120851/1
Fire	BS476 Part 20: 1987 NPD Hydrocarbon Fire Test Curve	Warrington Fire Research	ProTek™ Fire / Blast Wall Panels with Double Butt strap joint	Warres No: R11927	H120	
Fire	Lloyd's Register Classification for Offshore Installations NPD Hydrocarbon Fire Test Curve	Faverdale Technology Centre	Thin Wall H60 Fire Wall Panel	FTCR/93/007	H60	Det Norske Veritas (DNV) Ref. F- 12501
Fire	Hydrocarbon Fire Resistance Test FRS 14-84	SGS Yarsley	ProTek™ Fire / Blast Wall Panel	J92313/1	H60	Lloyd's Register Ref. SOU 320009/1
Fire	Hydrocarbon Fire IMO Res. A754(18)	BRE Borehamwood	ProTek™ Under Deck and Walkway Panel	TE 203966	H60	
Fire	Hydrocarbon Fire IMO Res. A754(18)	LPC, Boreharnwood	ProTek™ Fire / Blast Wall Panel	TE91682	H60	

Technical Integrity

Proven Performance

- **√**2½ hour Hydrocarbon Jet fire ISO 22899
- ✓ Spadeadam Jet fire <u>after</u> 1.3 Barg Blast
- ✓ Explosion Tests up to 2.5 Barg
- √H150 Furnace Fire
- ✓Impact Tests up to 5kJ energy
- √38 dB noise reduction
- √Smoke & toxicity Airbus Test
- √Spread of Flame BS476



Engineering Methodology

Engineering Methodology

- Guided by specifications
- ✓ Not ruled by standards
- Plenty of test data available for use
- ✓ Blast, Impact & Fire protection rating
- ✓ FEA Modelling validated
- Classification Society Certification
- ✓ Update regularly development

Industry Expertise

DVR No.FGBUK-PP022200.02 Rev.1

Det Norske Veritas

DESIGN VERIFICATION REPORT

(APPROVAL OF DESIGN METHODOLOGY)

for

Fire and Blast Barriers

This is to confirm that the design methodology and supporting design documentation for the Fire and Blast barriers manufactured by Solent Composite Systems Ltd have been examined and found to comply with the codes and standards listed in section A and with current practices of the oil and gas industry.

In DNV's opinion the ProTek® Composite Materials Fire & Blast Panels are suitable as barriers against fire and blast loads and can be engineered, if appropriately supported by a suitable structure, to act as an enclosures or a blast wall.

The objective of the fire and blast barriers is to provide protection to people and/or safety critical equipment against blast overpressure and prevent the temperature of the protected area from rising above unacceptable limits when exposed to a 2 hour jet fire impingement.

The assessment of the design methodology was based on:

- . Reviewing:
 - Testing and certification documentation of the ProTek® Composite Materials Fire & Blast Panels
 - Thermal analyses performed on specific projects that have been verified by DNV
 - Mechanical properties of the panels
 - · Typical general arrangements drawings
 - Typical fabrication details
- I. Taking into account past experience which DNV gained from the verification of the ProTek® Composite Materials Fire & Blast Panels designed and constructed by Solent Composite Systems Ltd to function as enclosures for a number of projects for the Oil & Gas industry for onshore and offshore applications.

This Design Verification Report has been updated to take into account the replacement of OTI 95 634 by ISO 22899-1.

Based on the review of the gap analysis of the two standards the previous testing program can be considered in compliance with ISO 22899-1.

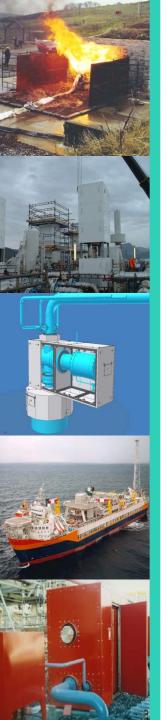
DVR No.FGBUK-PP022200.02 Rev.1

The design parameters that have been considered are listed in section A. Section B lists the documents used whilst section C lists the conditions attached to this statement.

A. Design Parameters, Design Codes & Design Specifications

The design of the enclosures has been assessed for the following conditions and with respect to the requirements of the design codes as applicable.

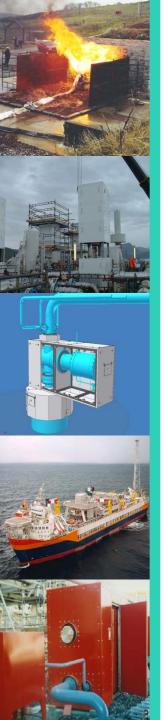
Parameter	Magnitude	Unit
Blast Overpressure, followed by Hydrocarbon Jet Fire	Max 1.3	barg
Blast Duration	80 -120	ms
Drag Pressure	Max 0.5	barg
Jet Fire – Heat Flux	250 – 320	kW/m ²
Jet Fire Duration	140	min
Hydrocarbon Fire	H150	min
Norsok Standard R-004 Insulation Class	5	

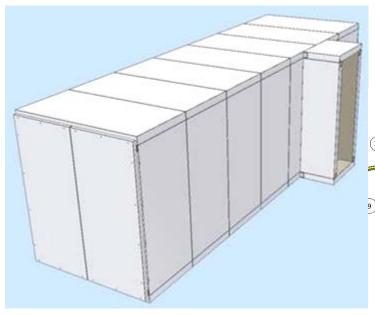

Codes and Standards

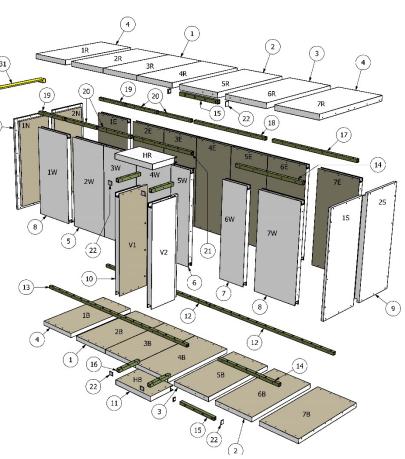
- DNV RP C204 Design against accidental Loads
- API RP 2FB Recommended Practice for the Design of Offshore Facilities against Fire and Blast Loading
- · Design of Blast resistant Buildings in Petrochemical Facilities ASCE Report
- Norsok R-004, 3rd Edition Piping and Equipment Insulation
- ISO 22899-1 2007 Determination of the resistance to jet fires of passive fire protection materials.

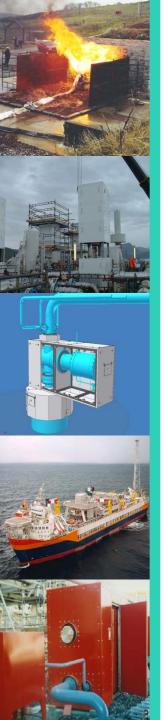
Design Specifications

- TOTAL FINA ELF EXPLORATION AND PRODUCTION, GENERAL SPECIFICATION GS SAF 337 REV 0P1 Safety Passive Fire Protection
- Statoil TR 00650 Final Ver. 3, Technical & Professional Requirements
- NRF-072-PEMEX-2009 (*) Fire Walls Rev 0
- Hydro Ormen Lange Project Doc. 37 1A-AK-F15-00002 Rev 07F Design Accidental Load Specification
- (*) English Translation provided by Solent Composite Systems Ltd.






Certification Example



Freezer Module

Freezer Module

JÅ Dinv DVR No.FGBUK-PP005257.01 Rev Page 1 o

Det Norske Veritas

DESIGN VERIFICATION REPORT (INDEPENDENT REVIEW CERTIFICATE)

Equipment

: Freezer Container

Customer/Manufacturer

: Solent Composite Systems Ltd

Statoil / Aker Solutions

Project

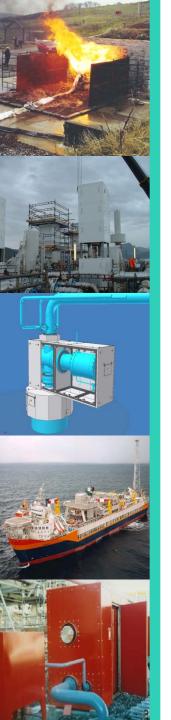
Gullfaks

DNV Project Number

PP005257

This is to confirm that the design for the Freezer Container to be installed on the Living Quarters of the Gullfaks Platform has been verified and found to satisfy the conditions described in section A. The verification has been based on the requirements of:

- DNV-OS-C101 "Design of Offshore Steel Structures" Section 7, Oct 2009
- DNV-RP-C204 "Design Against Accidental Loads" Section 2.2, April 2005
- · Documents listed in Section B of this statement.


The verification of the design has been performed by reviewing:

- Testing and certification documentation of the ProTekTM Panels,
- · Customer's specifications
- · Mechanical properties of the panels
- · Detail drawings of the Enclosure Panels
- · The design documentation of the Enclosure Panels

Section A of the verification report lists the design parameters that have been considered, section B lists the documents used in the verification and section C lists the conditions attached to this statement.

Summary

- Regulatory Requirements & Standards
- Certification & Testing
- Engineering Methodology

Novel products need novel approaches

Industry Expertise

Thank You - Any Questions?

Tel: +44(0)1983 292602 Fax: +44(0)1983 299055

Email: matt@solentcomposites.com
URL: www.solentcomposites.com

