

Fire-Resist Marine application case

Pietro Di Modica

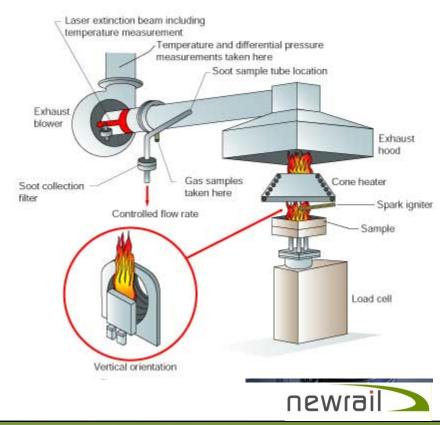
RA at Newcastle University pietro.di-modica@ncl.ac.uk

Contents

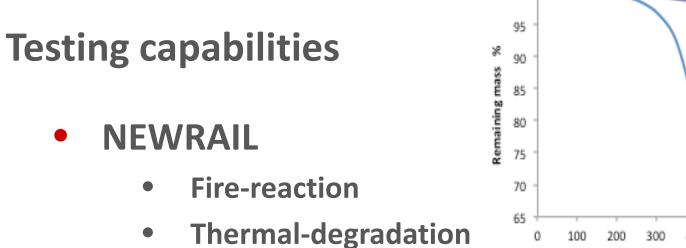
- Who, Where and What we do;
- Fire-Resist EU project summary;
- Fire-Resist marine application fire test results.

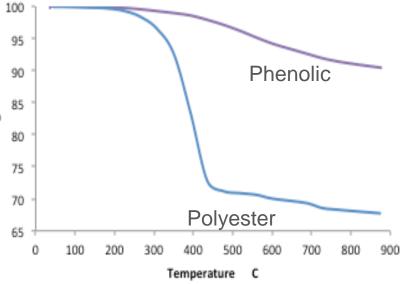
Who and Where

- NewRail <u>www.newrail.org</u>:
 - Based in Newcastle University
 - Rail Vehicle group
 - Rail Freight and Logistic group
 - Rail Infrastructure
 - Rail Systems
 - Rail Education
 - Rail Strategy Group



Testing capabilities


- **NEWRAIL**
 - Fire-reaction



University

Insulated shroud

300 mm or 500 mm 👝 150 mm I.D. 🔔

Sample

→^{60 mm}←

Testing capabilities

- NEWRAIL
 - Fire-reaction
 - Thermal-degradation
 - Fire-resistance (Fire tests under load)

JCK

LabView system Hydraulic Cylinder

12, 30mm burners

in 3 staggered rows

600 mm

Sample

 $\rightarrow \frac{70 \text{ mm}}{\text{centres}} \leftarrow$

Pressure Transducer newrail

Hydraulic

Plates

Pump

Testing capabilities

• NEWRAIL

- Fire-reaction
- Thermal-degradation
- Fire-resistance (Fire tests under load)
- Mechanical tests
- Mechanical tests at high temperatures
- Thermal properties measurements

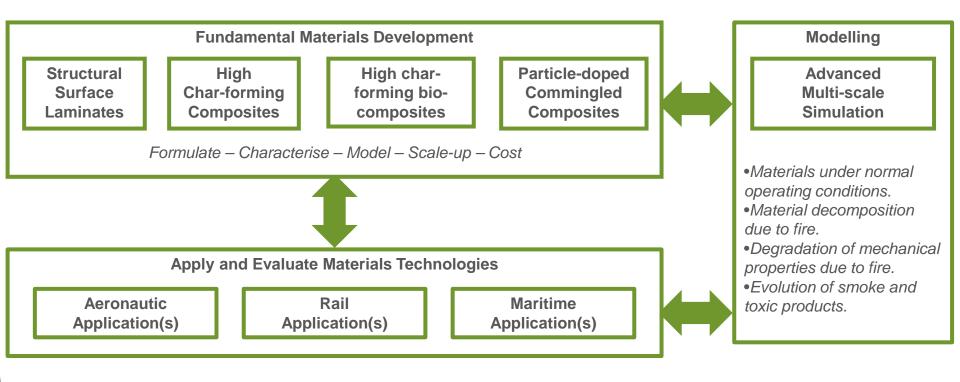
Newcastle

Fire-Resist A collaborative approach

- The rationale behind the FIRE-RESIST project was to bring together:
 - Vehicle/vessel manufacturers from the rail, aerospace and maritime industries.
 - Industry certification bodies.
 - Suppliers of fire-resistant composite materials.
 - Producers of composite mouldings.
 - Developers of new composite materials and processes.
 - Specialists in fire testing.
 - Specialists in fire simulation.
 - Specialists in managing the risk of new product development and introduction.

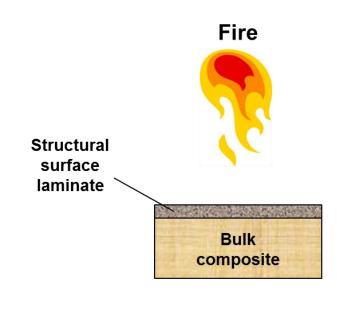
The FIRE-RESIST project

- 4 year project commenced February 2011- January 2015.
- 18 partners from 9 European countries.
- Remit:
 - To develop new concepts for composite materials that are both lightweight and fire-resisting.
 - To develop multi-scale approaches to simulating the fire behaviour of composite materials.
 - To validate the performance of the FIRE-RESIST materials through the design, manufacturing and testing of industrial case study components.

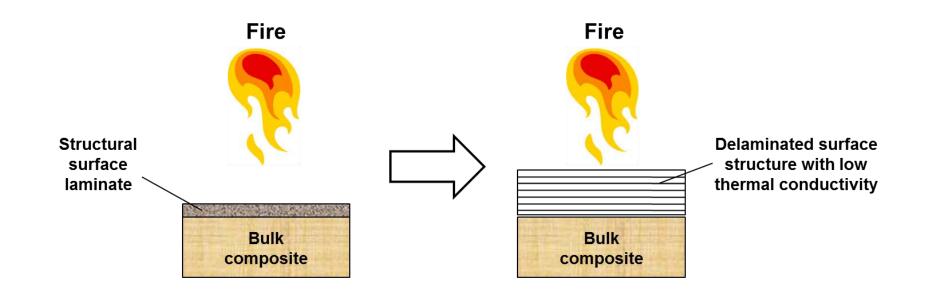


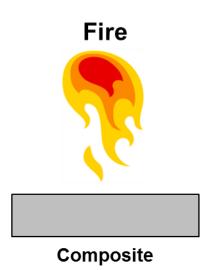
🥬 Newcastle

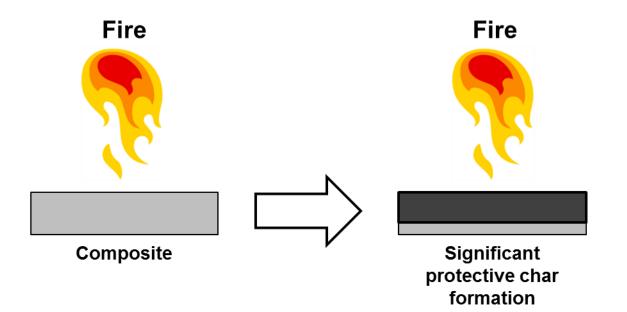
The approach



Innovation Risk Management and Life Cycle Studies


FIRE-RESIST New material developments 1: structural surface laminates


FIRE-RESIST New material developments 1: structural surface laminates

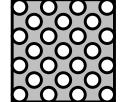

FIRE-RESIST New material developments 2/3: high charforming composites

FIRE-RESIST New material developments 2/3: high charforming composites

┿

FIRE-RESIST New material developments 4: particle-doped commingled composites

Particle-doped fire


retarded polymer

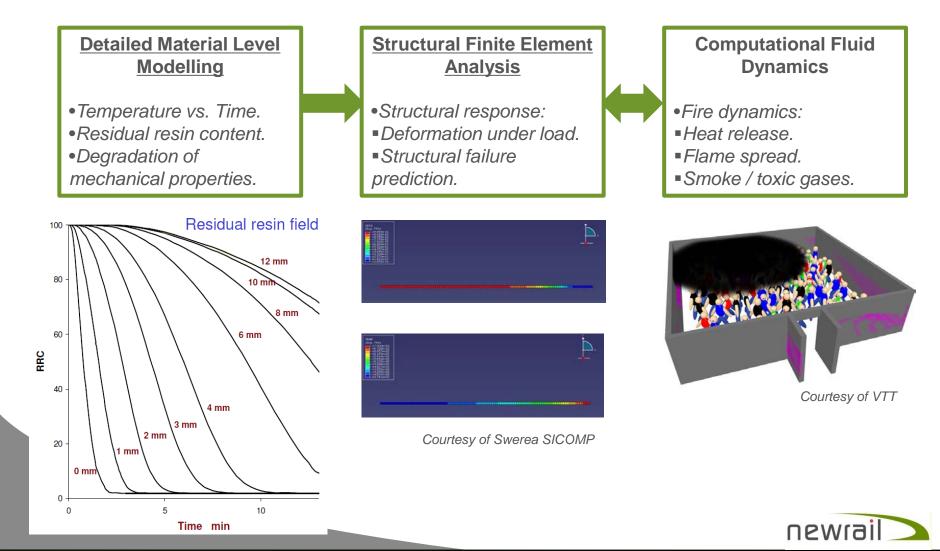
fibres

Fibre reinforcements (carbon or glass)

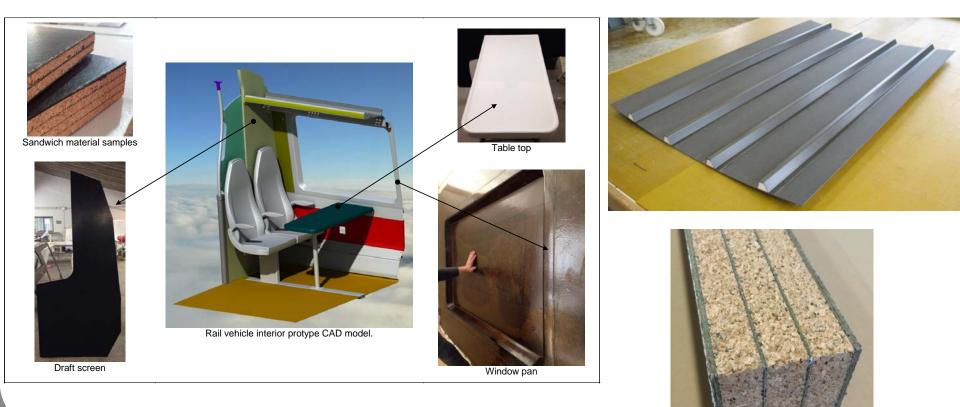
Commingled polymer / reinforcement fibre preform and pressure

Consolidate: heat

Newcastle


Universitv

High-performance fire-retarded fibre reinforced polymer part



Multi-scale fire simulation

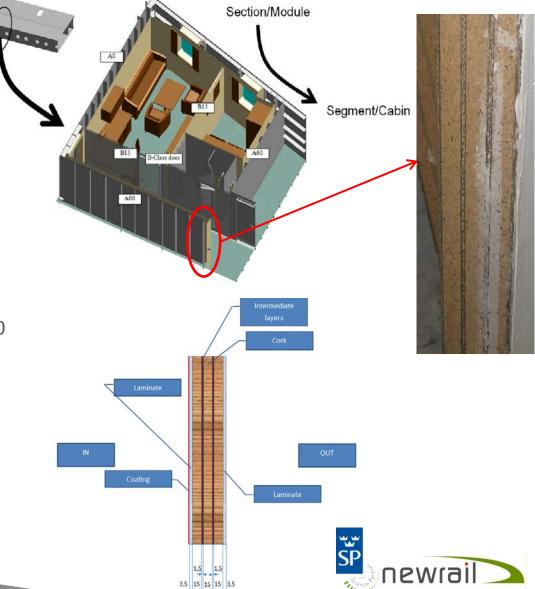
Validation through case studies

University

FIRE-RESIST

Maritime demonstrator

Composite Ropax superstructure


Replacing A60 bulkhead with FRP design.

Candidate bulkhead:

- Triple cork core sandwich with furan laminates
- Intumescent coating on internal surface

Ambition: Equivalent safety compared to A60 steel design.

Requirements/performance indicators determined on FMEA-workshop led by DNV-GL at a workshop in Alessandria in September 2014.

Maritime demonstrator – Fire resistance, large scale

Requirements

FRD60 according to Part 11 in the FTPcode:

- Load bearing capacity; 7 kN/m vertical load for 60 minutes
- Insulation, after 60 minutes;
 - Average temperature rise on unexposed surface < 140 $^{\circ}$ C
 - Individual temperature rise on unexposed surface < 180 $^{\circ}$ C
- Integrity, for 60 minutes;
 - No flaming on the unexposed face
 - No ignition of the cotton-wool pad
 - It shall not be possible to enter the gap gauges into any opening in the specimen

newrai

🧀 Newcastle

Maritime demonstrator – Fire resistance, large scale

Results

FRD60 according to Part 11 in the FTP-code:

- Load bearing capacity; 7 kN/m vertical load for <u>77 minutes</u> (60 minutes requirement)
- Insulation, after 60 minutes;
 - Average temperature rise on unexposed surface <u>5° C</u> (< 140° C requirement)
 - Individual temperature rise on unexposed surface <u>6 ° C</u> (< 180 ° C requirement)
- Integrity, was maintained until the load bearing capacity was lost after <u>77 minutes</u>

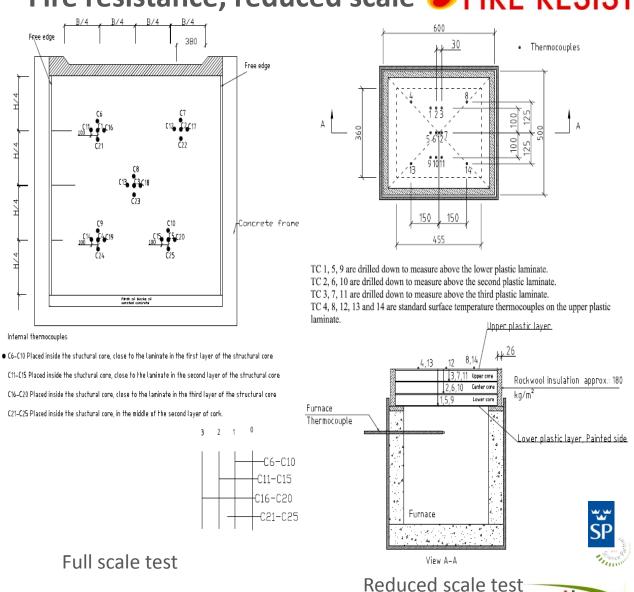
newrail

Newcastle

University

University

newrai

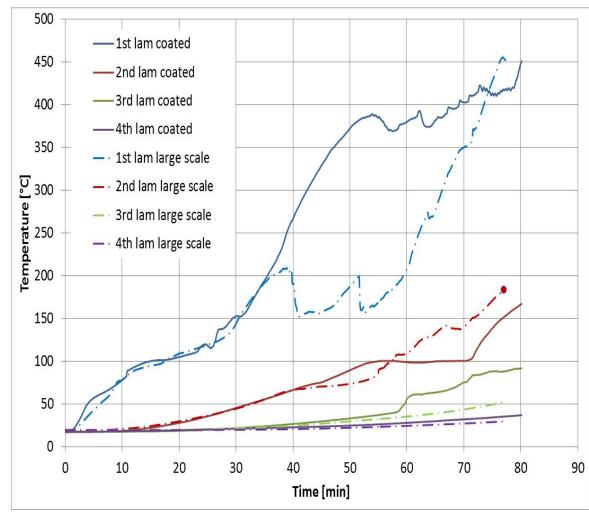

Maritime demonstrator – Fire resistance, reduced scale **FIRE-RESIST**

Correlations full vs reduced scale

- Full scale specimen: 3000x3000 mm
- Reduced scale specimen: 600x500 mm

Full scale vertically mounted Reduced scale horizontally mounted

Temperature measured on unexposed side of each laminate in multiple positions, average temperature on each laminate compared.


Maritime demonstrator – Fire resistance, reduced scale **#FIRE-RESIST**

Correlations full vs reduced scale Full scale specimen: 3000x3000 mm Reduced scale specimen: 600x500 mm

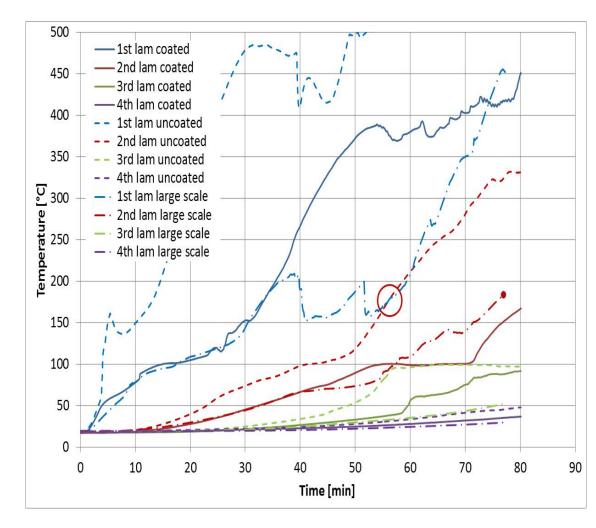
Full scale vertically mounted Reduced scale horizontally mounted

Temperature measured on unexposed side of each laminate in multiple positions, average temperature on each laminate compared. In general quite good correlation!

Collapse occurs when the second laminate reached approximately 175 °C. This correlates quite well with previous experience where traditional sandwiches with two polyester laminates collapses at about 150 °C.

🥦 Newcastle

University



Maritime demonstrator – Fire resistance, reduced scale **#FIRE-RESIST**

Comparison with and without intumescent paint

An additional small scale test without intumescent paint was performed.

If the assumption is correct that the load carrying capacity is lost when the second laminate reaches 170-180 °C approximately 50 – 60 minutes of fire resistance can be expected from a non-coated sandwich.

Maritime demonstrator – Reaction to fire

Requirements

Low flame spread characteristics according to Part 2 and Part 5 in the FTP-code.

Part 5 criteria:

- CFE, critical flux at extinguishment: \geq 20.0 kW/m²
- Qsb, average heat for sustained burning: $\geq 1.5 \ MJ/m^2$
- Qt, total heat release: \leq 0.7 (0.2*) MJ
- Qp, peak heat release rate: \leq 4.0 (1.0*) kW

*If values within brackets are reached the product is considered to comply with Part 2 without further testing.

The demonstrator <u>with</u> coating reaches low flame spread characteristics without further testing.

With coating Test no	1	2	3	Averag e	Surface flammabili ty criteria
Heat for ignition, MJ/m ²	-*	-*	-*	-*	
Q _{sb} , MJ/m ²	_**	_**	_**	_**	≥ 1.5
CFE, kW/m ²	48.4	48.4	48.4	<u>48.4</u>	≥ 20.0
Q _t , MJ	< 0.1	< 0.1	< 0.1	< 0.1	≤ 0.7
Q _p , kW	< 0.1	< 0.1	< 0.1	< 0.1	≤ 4.0

* Not calculated (extent of burn < 150 mm). ** Not calculated (extent of burn < 175 mm).

Maritime demonstrator – Reaction to fire

Requirements

Low flame spread characteristics according to Part 2 and Part 5 in the FTP-code.

Part 5 criteria:

- CFE, critical flux at extinguishment: \geq 20.0 kW/m²
- Qsb, average heat for sustained burning: ≥ 1.5 MJ/m^2
- Qt, total heat release: \leq 0.7 (0.2*) MJ
- Qp, peak heat release rate: \leq 4.0 (1.0*) kW

*If values within brackets are reached the product is considered to comply with Part 2 without further testing.

The demonstrator <u>without</u> coating does not reach the criteria for low flame spread characteristics.

Without coating Test no	1	2	3	Averag e*	Surface flammabili ty criteria
Heat for ignition, MJ/m ²	4.40	3.50	-	<u>4.0</u>	_
Q _{sb} , MJ/m ²	4.40	3.70	-	<u>4.1</u>	≥ 1.5
CFE, kW/m ²	12.4	16.5	-	<u>14.5</u>	≥ 20.0
Q _t , MJ	0.70	0.70	-	<u>0.7</u>	\leq 0.7
Q _p , kW	6.3	3.9	-	<u>5.1</u>	≤ 4.0

* Average based on two measured value.

Maritime demonstrator – Reaction to fire

Requirements

Part 2 criteria:

The samples were tested under each of the following conditions:

- Irradiance of 25 kW/m² in the presence of pilot flame.
- Irradiance of 25 kW/m² in the absence of pilot flame.
- Irradiance of 50 kW/m² in the absence of pilot flame.

At all of these conditions the following criteria must be met:

- Dm, average maximum specific optical density, \leq 200
- Gas concentration limits:
 - CO 1 450 ppm
 - HCl 600 ppm
 - HF 600 ppm
 - NO_x 350 ppm
 - HBr 600 ppm
 - HCN 140 ppm

– SO₂ 120 ppm

With coating	Limit	25 kW/m ² with pilot	25 kW/m ² without pilot	50 kW/m ² with pilot
		flame	flame	flame
Dm	200	81	97	134
CO conc.	1 450	260	132	692
	ppm			
HF conc.	600 ppm	<5	<5	<5
HCl conc.	600 ppm	16	15	15
HBr conc.	600 ppm	<10	<10	<10
HCN conc.	140 ppm	39	27	123
NO _x conc.	350 ppm	43	<20	26
SO ₂ conc.	120 ppm	<10	<10	<10

Newcastle

University

Conclusion

- Composite materials can be improved in terms of fire resistance without loosing in mechanical performance
- Composites, if formulated ad hoc, can perform as good as steel or even better.
- Structural composite applications in transport industry can be achieved and become a reality.



Acknowledgement

EU FIRE-RESIST PARTNERSHIP

To develop new concepts for composite materials that are both lightweight and fire-resisting.

FIRE-RESIST PARTNERS

Thanks for your attention.

