

COMposite super-structures for large PASsenger Ships

Partners

DBI - Danish Institute of Fire and Security Technology (lead)

Niels Hjørnet Yacht Design

Support: (non-complete list of 9 companies)

🔻 Scandlines

Technical University of Denmark

DTU Mechanical Engineering Department of Mechanical Engineering

DTU Civil Engineering Department of Civil Engineering

- Lightweight Structures group (Mech)
- Fire Engineering group (Civil)
- Maritime group (Mech)

Funding (2014 and 2015)

THE DANISH MARITIME FUND

+ co-funding from DTU and DBI

Complicated and time demanding analysis of fire safety according to SOLAS II-2, Rule 17

Barrier for further development and use of FRP in larger civillian vessels

Large potential for retrofit and new-builds of ships using composites

Challenges

Aims

- KOMPAS aims at making the path easier for design and retrofit of composite superstructures for larger passager ships for
 - yards / design consultants
 - sub-suppliers
 - ship owners
 - authorities

 Adopt a standalized approach through guidelines combined with (pre-) fire proven FRP structural standard components

Work packages

WP 1: Dissimination and distribution of knowledge

WP 2: Structural design, analysis and testing

WP 3: Fire testing and analysis

WP 4: Development of Rule 17 guidelines for analysis- and testing procedures

Demonstration Ship: Princess Benedikte

Route	Puttgarden-Rødby
Туре	RoPax
Construction year	1997/2003
Gross tonnage	14,822
Shipbuilder	Ørskov Staalskibsværft, Denmark
Flag	Danish
Engines	4 pc Mak, type 8M32 / 1 pc MAN type 6L32 / 44CR
KW	17,440
Length, oa	142 m
Breadth incl. fender	25.4 m
Service speed	18.5 kn
Length, oa	1 track, 118 m
Lanemeter, lorries	580
Lanemeter, cars	1,747
Car capacity	364
Passenger capacity	1,140

Superstructure

VScandlines

Superstructure

Retrofitting is focused on the passenger Decks -17700 mm above the Baseline

Comparison between designs

Y 1 X

Composite Superstrusture weight: 136 tons

The effects on the stability of the ship will be calculated

Structural Analysis

Testing is seprated in three phases :

-Material Characterisation

-Mid-scale Testing

-Large scale testing

The tests' specifications for the first two phases have been defined The experimental setup is being assembled at the moment

Standard fire resistance tests

Scale	Apparatus	Data obtained	Drawbacks
Matter Scale	TG Analyzer,	Chemical	
Material Scale	Cone Calorimeter, 	Ignitability, heat release rate, smoke production	
Products Scale	ISO 21367,	Heat release rate, ignitability, surface spread of a flame, falling droplets/particles and smoke production	
Large Scale	Furnace	Fire resistance (with time- temperature curve ISO 834 and mechanical loads)	Time, High cost, Repeatability
Could be replace by by avoiding			
H-TRIS			

H-TRIS: Heat Transfer Rate Inducing System

Comparison of concrete specimens' internal temperatures recorded in a furnace as compared against H-TRIS test results.

Calibration of the burner

Aim of the burner calibration :

- ✓ To verify the homogeneity of the flux at the target panel
- ✓ To know the position/ heat flux of the burner in order to have the required flux at the target panel
- ✓ To know the time of stabilization during a change of intensity of the burner heat flux or during the change of position of the burner

Heat flux Burner output: 10% to 100% of max flow gauges Gas burner Calibration panel 100 cm 80 60 cm Burner- Calibration Panel distance 40 20 cm 0 cm cm

Experimental device for the calibration of the burner

Calibration of the burner Verification of the homogeneity of the flux at the target panel -Position of heat flux gauges

Calibration of the burner

the position/ heat flux of the burner in order to have the required flux at the target panel – Results (50% of max burner intensity)

- Philosophy A: Staying as close as possible to the prescriptive regulations by making conservative equivalences in terms of passive protection compared to an equivalent prescriptive design (Eco-Island ferry).
 - Pros: Fairly straightforward, also testing-wise
 - Cons: Faces the "non-combustibility" challenge (i.e. direct comparison with steel)
- Philosophy B: Adapting the protection to the level of risk in a given compartment, combining both active and passive protection (MP08 project).
 - Pros: Freedom of design
 - Cons: Requires more engineering to begin with

APPLICATION OF REGULATION 17 OF CH. II-2 OF THE SOLAS CONVENTION

Immediate actions

- Test relevant composite materials
 Does anybody want to partner with us?
- Increased interaction between FEM results and Fire test results
- Continued work on method for application of Rule 17

COMPASS: Contacts

Dan Lauridsen, MSc DBI	<u>dhl@dbi-net.dk</u>
Jørgen Juncher Jensen, Prof., Dr. Techn. DTU Mechanical Engineering	jjj@mek.dtu.dk
Christian Berggreen, Associate Prof. DTU Mechanical Engineering	<u>cbe@mek.dtu.dk</u>
Grunde Jomaas, Associate Prof. DTU Civil Engineering	<u>grujo@byg.dtu.dk</u>
Niels Kyhn Hjørnet, Naval Architect	nkh.yacht@gmail.com
Claus Langhoff, Project coordinator DBI	<u>cll@dbi-net.dk</u>

We invite <u>any</u> interested companies and partners to make contact with the group throughout the project to share input and results.

