Adaptive and smart materials and structures for more efficient vessels

Project introduction

Dr. Lars Molter, Dr.-Ing. Frank Roland


E-LASS Kick-off - October 8th- 9th, 2013

Short introduction

The collaborative project **ADAM EVE** is funded by the European Union within the Seventh Framework Programme (FP7).

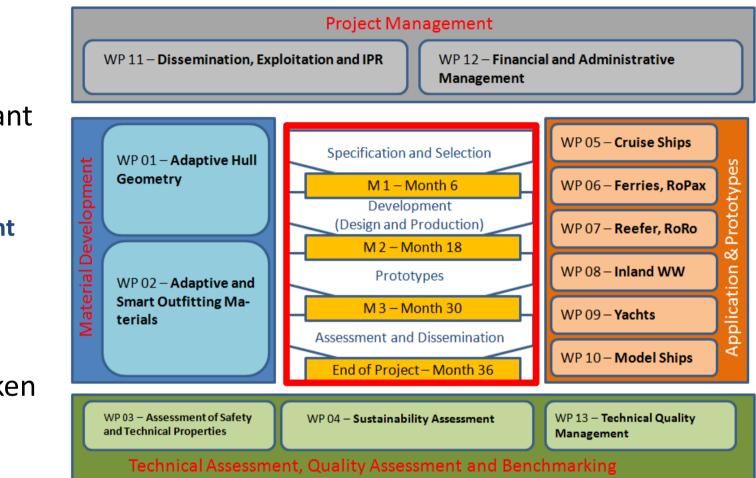
The project commenced in January 2013 with 22 partner for a duration of 36 months.

Center of Maritime Technologies e. V. – Coordinator (Germany) Uljanik Brodogradiliste DD – Shipyard (Croatia) RINA Services SPA – Classification society (Italy) Flensburger Schiffbau-Gesellschaft mbH & Co KG – Shipyard (Germany) Fraunhofer-Gesellschaft e. V. – Research organisation (Germany) VTT – Research organisation and towing tank operator (Finland) Lloyd's Register EMEA – Classification society (United Kingdom) SP – Research organisation (Sweden) Alveus I.I.c. – Design office (Croatia) University of Southampton – Research organisation (United Kingdom) Ship Design Group SRL – Design office (Romania)

Universitatea Dunarea De Jos Din Galati – Research organisation (Romania)

STX France SA – Shipyard (France)Compania Transmediterranea SA – Ship operator (Spain)

ACCIONA Infraestructuras S.A. – Industry company and material expert (Spain)


HSVA GmbH – Research organisation and towing tank operator (Germany)

Carnival PLC – Ship operator (United Kingdom) SC NAVROM Reparatii SRL – Shipyard (Romania) MEC Insenerilahendused – Design office (Estonia) SAARE PAAT AS – Yacht builder (Estonia) PAULSTRA – Industry company and material expert (France) Rhebergen Composites BV – Material expert (Netherlands)

Workplan overview

Three important sections:

Material development Assessment Application

Project is broken down into four phases

Scope I

The main idea:

- To explore the potentials of adaptive and smart materials and structures in ships and pave the way for industrial application.
- These materials and structures will allow ships to *react more flexibly to* the changing operational and environmental conditions and thus to provide a more efficient and environmentally friendly operation while at least maintaining the current safety level.
- Moreover, the use of smart and intelligent materials will allow offering *new functionalities, making ships more attractive* to operators and passengers.
- The "lightweight-effect" is not achieved by light materials
- The scale of structures, outfitting and machinery can be decreased by using adaptive solutions with improved functionality.

Scope II

Problems

- varying operational and environmental conditions.
 - ship designs optimised for specific operational and environmental conditions
 - Structures and materials usually have constant properties

Aims

- improve ship performance and safety by making materials and structures modifiable during operation;
 - modifications can be passiv (smart materials) or activ (sensors and actuators);
 - provide inexpensive solutions using recent developments of nanotechnologies and material sciences

Challenges • **complexity** of ships and ship systems

- extreme loads and environments
- safety recommendations
- **cost efficiency** constraints in a one-of-a-kind industry

Objectives

• Material and Component Development to

- -take up relevant knowledge from other industries and research
- develop suitable adaptive multi-material components, actuators and control mechanisms
- -develop modules, interfaces and manufacturing processes for the marine sector

Assessment of Safety and Sustainability to

- -identify and rank potential risks and applicable risk control options
- -identify KPIs for LC efficiency, environmental impact
- -perform assessment of safety, technical functionality and life cycle impact.

Validation and Development of Realistic Application Cases to

- -apply the innovative solutions in **realistic design studies for specific products**
- -validate the components' functionality and producibility
- identify problems and research needs for extended maritime application of adaptive materials.

Applications/Solutions

Several application areas were selected accounting for:

- 📥 Cruise vessels
- RoRo/RoPax vessels
- Reefer vessels & train ferries
- Inland navigation vessels
- Sailing yachts

Lightweight and innovative materials are investigated:

- Reinforced rubber
- Electrochromic & thermochromic coatings and foils
- Coatings with adaptive fire-safety properties
- Magnetorheological elastomers
- Etc...

And applied in adaptive solutions:

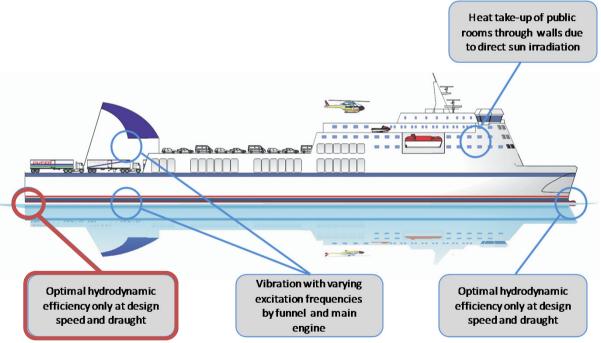
- Adaptive Stern-Flap
- Adaptive Bulbous Bow
- Phase changing insulations for thermal energy storage
- Electrochromic laminated windows
- ➢ Etc...

					Impact	Feasibility	
						(3=high, 2=medium, 1=low)	
					After the	Within the	After the
					project	project	project
	No	tec 👻 Idea	Ap 👻 Area	Weight factor	34%	33%	33%
	NU	No.	Area No.	Weight factor Total	34%	66%	
ions	1	2	5	Adaptive window (Thermochromic) APPLIED FOR Windows with adaptable transparency	1.85	2.05	2.50
Solut	2	3	5	Adaptive window (Electrochromic) APPLIED FOR Windows with adaptable transparency	2.00	1.90	2.00
Potential Solutions	3	3	1/	Adaptive window (Electrochromic) APPLIED FOR Windows with adaptable transparency	2.10	2.05	1.75
	4	6	4	SPD foil APPLIED FOR Finishing touch	1.60	1.80	1.75
	5	6	22	SPD foil APPLIED FOR Climate control of the ceiling of the uppermost deck	1.80	1.65	1.38
	6	6	23	SPD foil APPLIED FOR Emergency guidance inside the corridors	1.85	1.65	1.63
	7	7	4	thermochromic paint APPLIED FOR Finishing touch	1.95	2.30	2.50
	0	7	22	thermochromic paint APPLIED FOR Climate	2.00	1 05	2.00

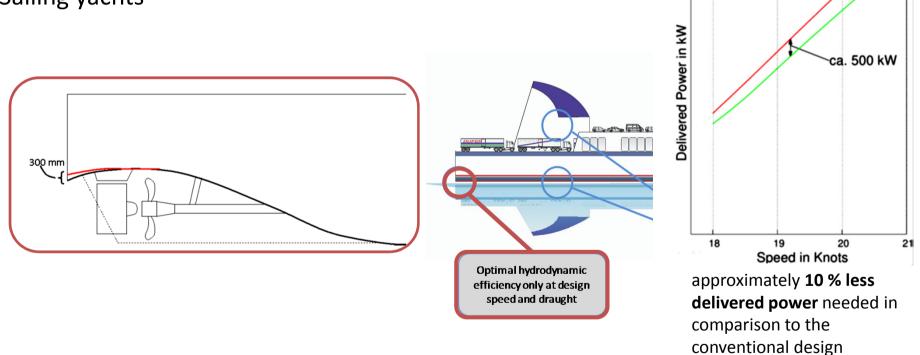
ADAM4EVE – Examples

- Several application areas were selected accounting for
- Cruise vessels
- RoRo/RoPax vessels
- Reefer vessels & train ferries
- Inland navigation vessels
- Sailing yachts

approximately **10-15 % less** energy consumption for heating, ventilation and air conditioning

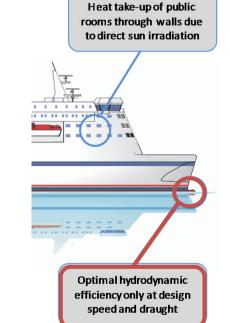


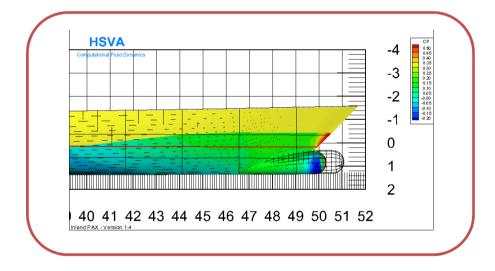
ADAM4EVE – **Examples**


- Several application areas were selected accounting for
- Cruise vessels
- RoRo/RoPax vessels
- Reefer vessels & train ferries
- Inland navigation vessels
- Sailing yachts

ADAM4EVE – Examples

- Several application areas were selected accounting for
- Cruise vessels
- RoRo/RoPax vessels
- Reefer vessels & train ferries
- Inland navigation vessels
- Sailing yachts




Speed/Power Overview

11

ADAM4EVE – **Examples**

- Several application areas were selected accounting for
- Cruise vessels
- RoRo/RoPax vessels
- Reefer vessels & train ferries
- Inland navigation vessels
- Sailing yachts

approximately **10 % less** resistance by varying the length of about 700 mm

ADAM4EVE – Conclusions

Adam4Eve is the **first project** with adaptive and smart materials in the maritime sector The project will demonstrate the **feasibility for** applying materials and structures from other industries for marine applications The **demonstrators** built in the project will show the ecological and economic potential as well as the safe handling of adaptive materials in production, operation and scrapping.

Thank you for your attention!

For more information please visit the project's homepage <u>www.adam4eve-project.eu</u>

or contact:

Matthias Krause **CENTER OF MARITIME TECHNOLOGIES e.V.** Bramfelder Str. 164 D-22305 Hamburg Germany Tel.: +49 (40) 69 20 876-33 Email: krause@cmt-net.org

