

PFA THERMOSETS IN COMPOSITE APPLICATIONS

ELass meeting June 26th 2018

TransFurans Chemicals

TransFurans Chemicals

TFC

Our raw material

Furfural Chemistry Utilization of agrowaste as feedstock

Polyfurfuryl alcohol thermoset/ PFA

Liquid thermoset resin
Curing by acid catalyst in multistep mechanism
Uses water as dilluent
Molecular weight dependant viscosities
Temperature adjustable Tg

Polyfurfuryl alcohol thermoset/ PFA

PFA Thermoset

- **Low temperature cure < 95°C**
 - INFUSION RESINS
- High temperature cure > 120°C
 - . PREPREG RESINS

PFA Thermoset

- DMA thermal stability: Tg > 180°C
- TGA thermal stability > 200°C (inert)

PFA Applications

PolyFurfuryl Alcohol/ PFA

- " Liquid thermoset systems
- " Available in VOC free formulation
- Polycondensation biomass based thermoset with thermomechanical and FST properties like phenolic resins
- Acid mediated curing mechanism
- Available in various formulations
 - " Viscosity adjustment by water content (or FA)
 - Curing adjustment by change of acid strength of the catalyst.

PREPREG: Glass PFA skins - Nomex core sandwich panel

after 60 secs

after 180 seconds

WET LAY UP: Glass CSM PFA monolithic laminate

at start after 120 sec after 180 sec

PREPREG: Glass PFA monolithic laminate vacuum out-of-autoclave consolidated

PREPREG: Glass PFA monolithic laminate press consolidated

at start after 180 sec after 240 sec

Fire resistant composites: RAIL

- Technology developed for VARTM
- Allowing room temperature injection and curing at 80°C
- Application with mineral fibres.
- Yields a fire resistance specification of HL3 according EN45545

PFA infused glass fibre	EN45545 (50kW/m2)
MARHE	40kW/m2 << 60kW/m2
LOI	35 to 40%

Fire resistant composites : Aerospace

- PFA resins applied in form of prepregs.
- " Various application techniques using:
 - " hot compression moulding
 - " vacuum consolidation
 - autoclave consolidation

PFA 7781 glass prepreg consolidated at 140°C		
FAR 25.853 (a) Appendix		
F Part I	Flame Time: <<1 s	Requirement < 15 s
Flammability	Drip Flame Time: 0 s	Requirement < 3 s
	Burn Length: <1"	Requirement < 6"
FAR 25.853 (a) Appendix		Requirement < 65
F Part IV	Peak: 30-40 kW/m ²	kW/m ²
Heat Release	Total: 30-40 kW/m²	Requirement < 65 kW/m ²

fire performance of high performance polymer matrix composite materials for the transport sectors

Marine: Bulkhead demonstrator

Marine: Bulkhead demonstrator

Marine: Bulkhead demonstrator

Large scale furnace test

Start @ 7kN/m load

Failure @ 7kN/m load after 77min

