
Developments in ArmaFORM PET core materials for structural sandwich in marine applications

E-LASS Conference October 10 th -11 th, 2017, Pula

Stefan Reuterlöv GM Technical Service Armacell

1. Armacell – the company

Facts & figures

2. ArmaFORM PET – the product

Production process

Quality control

Product family

PET GR: Armacell's r-Pet technology

Product properties

Fatigue

Temperature stability

FST

3. ArmaFORM PET - Marine

Cost out using GR grade High density GR grade

4. Conclusions

Agenda

Armacell

approx.

3,000

employees worldwide

25 production facilities in 16 countries on 4 continents

Headquartered in Luxembourg with regional HQs in EMEA, Americas and APAC

PET Foams

TWO BUSINESS DIVISIONS

Advanced Insulation

develops flexible foam products for insulating mechanical equipment in markets where energy distribution is required.

Engineered Foams



develops custom-made high-performance foams used in wind energy, transportation, safety, and sports & leisure markets.

Armacell worldwide: 23 production plants in 13 countries on 4 continents

1. Armacell – the company

Facts & figures

2. ArmaFORM PET – the product

Production process

Quality control

Product family

PET GR: Armacell's r-Pet technology

Product properties

Fatigue

Temperature stability

FST

3. ArmaFORM PET - Marine

Cost out using GR grade High density GR grade

4. Conclusions

Agenda

1940s: long-grain balsa with plywood skins used in British aircraft: "Mosquito"

1960s: endgrain balsa used for GRP yachts.

1970s: PVC used for GRP boats: "HSV Viksten".

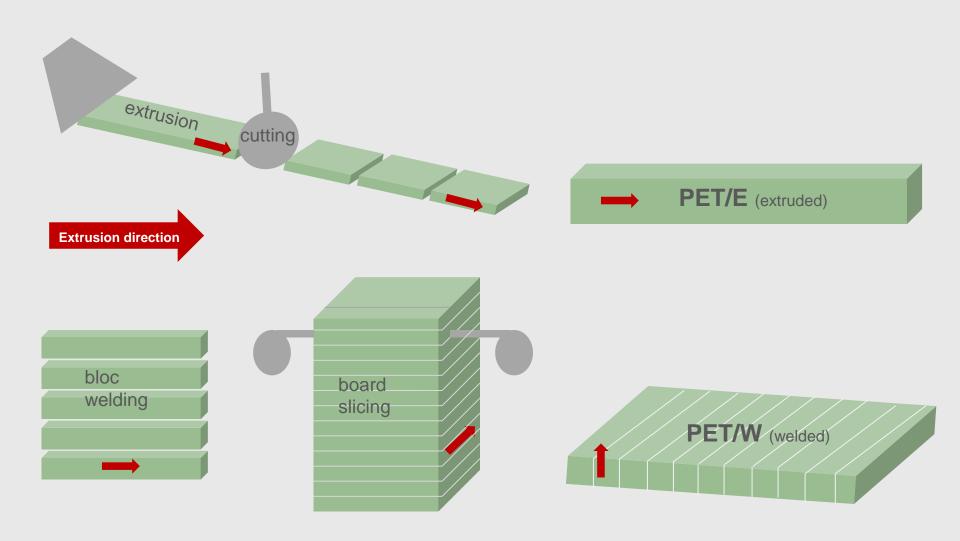
1980s: SAN foam as the new core for Marine application.

ArmaFORM PET® - huge development potential

2006: Launch of **ArmaFORM® PET.** Qualified as foam core in wind turbine blades.

2009: 2nd generation **ArmaFORM® PET** with significantly improved technical properties.

2010: **ArmaFORM®** PET GR: the 1st PET foam core based on postconsumer PET


2012: **ArmaFORM® PET FR** with superior FST properties . >60.000 wind for B&C and railway industry.

2017: **ArmaFORM® PET GFR** turbine blades

and continuation of success!

ArmaFORM® PET Core – the production process

ArmaFORM® PET Core – the product family

ArmaFORM® PET: the ideal combination of light weight, strength and durability!

PET FR

fire retardant

- NF F16-101
- DIN 5510-2
- EN 45545-2

65-150 kg/m³

Best-in-class fire properties ... for application with stringent flame, smoke and toxicity requirements. Will be replaced by GFR grade..

PET GR

highly ecological

- less CO₂ emission
- less energy consumption

70-320 kg/m³

Made 100% of post-consumer PET ... for use in environmental sensitive concepts.

Tailor-made with: scrim – grid scored – grooved – double contoured - perforated

... the 'green' among foam cores for the composite industry!

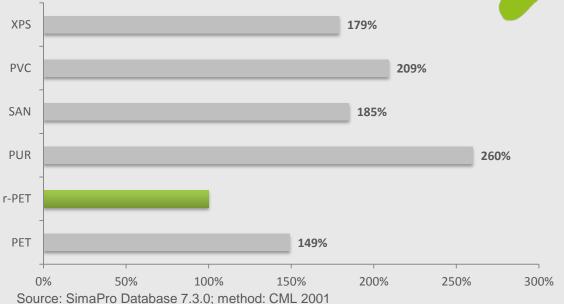
ArmaFORM® PET GR ...

Armacell's patented r-PET technology

Armacell has spent years of intensive research to develop a process technology that allows to produce consistent foam qualities from 100% post-consumer PET.

49% end up on **landfills** or waste our oceans.

15% mainly to incineration or **landfill** because of impurities.


36% recycled to new bottles, textiles etc.

^{*} source: www.pcipetpackaging.co.uk

PET Core – eco balance

Global warming potential (GWP) or carbon footprint – measures the potential global warming impact of a process in CO₂ equivalents of greenhouse gases.

ArmaFORM PET – product properties

Excellent damage tolerance

Easy processing with most types of resin & production methods

Outstanding fatigue resistance (threshold > 60%) for maximum lifespan

Easy to shape by thermoforming (3D)

Excellent long-term thermal stability

100% recyclable

Closed cell: limited water & resin absorption, no corrosion & degradation

Best-in-class FST properties

High processing temperature of 150°C (short-term up to 180°C)

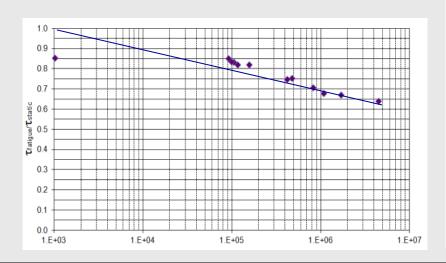
Superior mechanical properties (high compression strength & shear modulus)

Limited density variation (<5%)

Very good thermal conductivity (PET/W 0.034 W/mK, PET/E 0.028 W/mK)

Good screw retention & bonding

Certified:

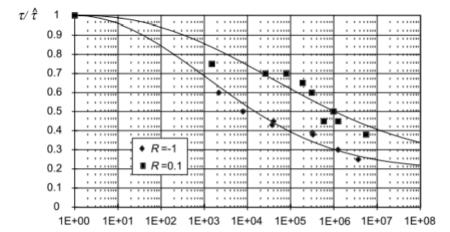


ArmaFORM GR grade; Fatigue testing GR115

ArmaFORM PET core performs much better than PVC core in fatigue:

Even though the <u>static properties</u> in the data sheets of PVC core might be higher ... when fatigue comes into play the actual useful strength properties are better for ArmaFORM PET:

And properties do not degrade before breaking



Core	R = -1	R = 0,1
PVC	20%	30%
ArmaFORM PET	45%	60%

Graph 2 Fatigue performance for PVC core

ArmaFORM PET – temperature stability

ArmaFORM PET exhibits glass transition temperature **(Tg)** close to **75°C**.

Above 75°C crystalline structure arise that acts as static, non-movable system until melting begins at about **240°C** (melting point).

Wide range of processing temperatures:

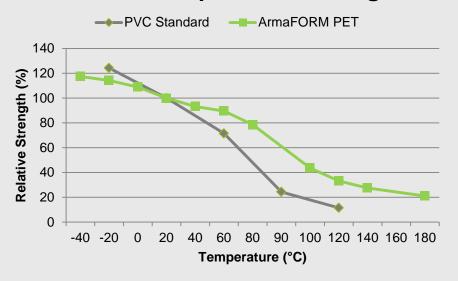
- e.g. 140°C: allows a process time of days
- e.g. 180°C: allows process cycles of a couple of hours

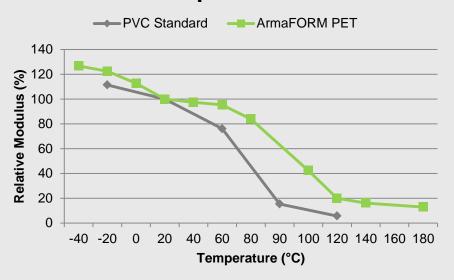
When cooled down ArmaFORM PET core maintains its original properties.

What is about PVC core foam?

No crystalline structure. Mechanical properties change drastically when Tg is exceeded! Tg for PVC core is 83°C

Processing temperature limited: Standard PVC: ~ 85-90°C High temperature PVC: ~ 130°C


No recovery of properties when cooling down ones the critical temperature has been exceeded.


ArmaFORM PET – temperature stability

After the Tg is exceeded (80-100°C) PET core loose mechanical properties more rapidly until the crystalline network provide a cushion effect. Above 180°C the crystalline network also starts to melt and the core softens even further.

Relative Compression Strength

Relative Compression Modulus

- ➤ Stiffness and strength properties for PET core are very stable within widely used operating temperatures.
- Maintains properties at elevated temperature significantly better than PVC:

120°C: approx. 33% for PET core

120°C: approx. 11% for PVC core

Compression strength (nominal)
PVC80:

1,4 MPa * 11% => 0,15 MPa
GR80:

0,95 MPa * 33% => 0,31 MPa

Armacell –FST properties

EN 45545 FST testing

Summary of test results EN 45545-2: 2013 requirements set R10: Panels with Phenolic skin both AC 80 and Nomex HC are HL3 (highest possible i.e. All applications possible including metro/subway trains)

SAMPLE 2982/83/84 Phenolic matrix with PET core (AC 80 core)					
Standards	Parametre	Results	Final classification		
ISO 9239-1	CHF (kW/m²)	10,9	HL3		
ISO 5660-1	MAHRE ((kW/m²)	0	HL3		
EN ISO 5659-2	Ds max	4	HL3		
	ITCG	0	HL3		

SAMPLE 2979/80/81 Phenolic matrix with nomex core					
Standards	Parametre	Results	Final classification		
ISO 9239-1	CHF (kW/m²)	10,9	HL3		
ISO 5660-1	MAHRE ((kW/m²)	2	HL3		
EN ISO 5659-2	Ds max	58	HL3		
	ITCG	0	HL3		

PET is even better than nomex honeycomb in smoke and toxicity

1. Armacell – the company

Facts & figures

2. ArmaFORM PET – the product

Production process

Quality control

Product family

PET GR: Armacell's r-Pet technology

Product properties

Fatigue

Temperature stability

FST

3. ArmaFORM PET - Marine

Cost out using High density GR grade

4. Conclusions

Agenda

High density PET

Increased interest in high density PET core, 200 and 250 kg/m3.

Traditional applications are for inserts and areas with creep problems, transoms etc.

Now we also see an interest in replacing balsa from other industries like wind blade applications, why??

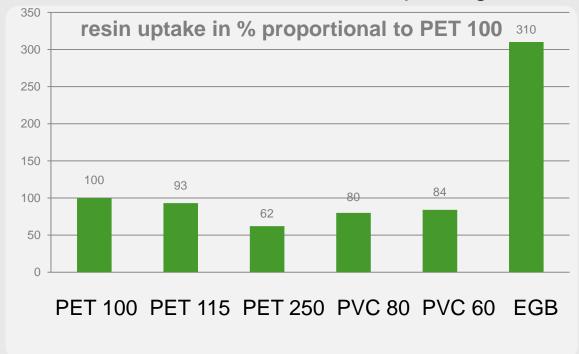
Balsa has several drawbacks as for quality and moisture uptake. One blade producer need to decrease the number of repairs, too much time and cost lost.

Another can not assure that the balsa does not exceed the moisture level set in the quality system.

High density PET

Now we also see an interest in replacing balsa, why?

Balsa has fantastic properties on paper but testing in 4-Point Bending show something else. GR 250 has clearly higher shear strength when tested in 4-PB than infused balsa beams

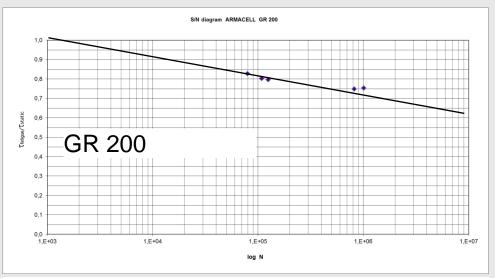

Ultimate shear strength

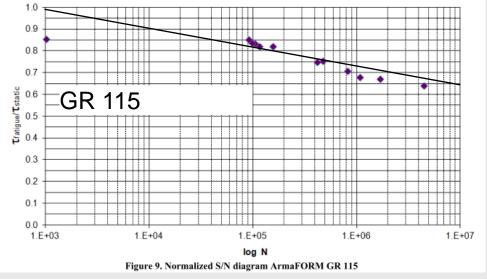
High density PET

Now we also see an interest in replacing balsa, why?

The high resin uptake for balsa will increase actual density to > 250 kg/m3 in most cases (thickness dependant).

So it is actually possible to infuse panels with better properties and lower weight using PET 250 than EGB




Fatigue testing on GR 200 at KTH

Correlation between the GR 200 and previous testing on GR 115 and other grades are extremly close and again confirm that results are density independent if normalised.

The fatigue threshold level is >60% and GR grade easily exceed the DNV GL requirement on m>10, for GR115 m=16,9 and testing on GR200 indicate at least this number.

Summary ArmaFORM GR grade

Advantages for PET cores vs. Other structural core materials.

- Great thermal stability
- Excellent fatigue properties
- Good FST properties with very low smoke and toxicity
- Lower density variation and flat sheets
- Excellent processing stabilty
- Possiblity to recycle the core, scrap from kitting today and the rest after the end of the blade life cycle.
- A core solely based on recycled PET material
- Possibility to thermoform also thick and complex shaped sections, saving resin, weight and cost.
- Best cost to performance ratio, >15% saving compared to other PET.
- Local production in Americas now and China "soon"

Questions?

