S-LASS logo

Efficiency, savings and optimum utilized resources are key words in today’s society. Through increased cooperation S-lass, the Swedish network for lightweight structures at sea, was contributed to a positive and sustainable development in those areas.

In 2016, the Swedish network was terminated to give its full engagement to the E-lass network.

Former projects:

EcoFerry
This Danish-Swedish project aims at the development of design guidelines for a lightweight FRP composite ferry. The project focus is on obtaining an authority acceptance for a displacing ferry through the EU Directive 2002/25/EC. Further will cost and environmental analysis be made (LCA/LCCA) and a market survey for light weight displacing ferries.

Participants in the project are:
• SP Technical Research Institute of Sweden
• Coriolis AB
• Kockums AB
• Styrsöbolaget AB
• DIAB AB
• The Swedish Transport Agency
• Danish Yachts A/S
• Hauschildt Marine A/S
• Aalborg University

• MARKIS – Maritime Competence and Innovation Skagerrak & Kattegatt

ECO-Island Ferry
The purpose of the “ECO-Island Ferry” project is to demonstrate the opportunities for fuel cost savings and reduction of environmental impact, if the vessel is built in modern light weight materials instead of traditional steel. In this project a ferry concept has been developed and described.

We have defined our ECO-Island Ferry as a ferry built of light weight carbon fibre materials, where the weight saving on the hull is used solely for reducing fuel consumption and thereby lowering the environmental impact (CO2 footprint).
The Eco-Island Ferry project will be completed and terminated in March, 2013.

As a result and spin-off from the Eco-Island-Ferry project, a commercial project for an eco-friendly ferry is now materialized in Denmark. The ferry operating across Limfjorden is a joint venture between Mors & Thy municipalities. Preliminary design and energy optimization is completed. Commercial negotiations between Yard and Customer are initiated.
The ferry will carry 12 cars and 98 passengers and will be regulated by Søfartsstyrelen’s (DMA) rules for near-coastal operation.


Background

It is a well-known fact that there is a fixed physical relationship between the weight of at transported load (ship+cargo) and the required power (horsepower). It is therefore obvious that the lighter the vessel itself is, the more pay load can be transported with the same power.
Other sectors of the transportation industry has for years been very well aware of this fact, and are constantly striving for designing lighter transportation vehicles.
Increasing fuel costs and environmental issues have become a key factor in modern shipbuilding, and it is therefore relevant to search for new methods to improve the efficiency – also for vessels.

Upcoming requirements from IMO will classify vessels above 400 GT according to their energy efficiency design index – EEDI. The new IMO regulations will be implemented from 2013 to 2025. These requirements will most likely – in a modified form – include smaller vessels too. A lighter vessel will have relatively higher energy efficiency than a heavier one.
Traditionally, vessels have been built in steel – or to a certain degree – aluminum. The choice of composite materials as the main structural material for a vessel hull is desired to reach higher speed with the same power, or to carry a larger payload with the same displacement.
A ship hull built of carbon-reinforced sandwich weighs only approximately 1/3 of a steel hull with the same displacement. Even if the equipment and installations in the ship are the same as in a similar steel vessel, the lighter vessel will require substantially less engine power to transport the same payload with the same speed.
But a carbon fibre ferry has a higher initial cost than a similar steel ferry, and the legislation in general requires or expects vessels to be built from steel or other non- combustible material.
Our Project targets are:
•To demonstrate that by reducing the weight of smaller vessel hull structure, significantly reduction in fuel consumption and environmental impact can be achieved (by comparing an existing steel ferry with an alternative design of a ferry in carbon fibre sandwich composite with the same payload and speed)

•To document that by calculating the accumulated cost of the vessel in its entire service life, there will be an economical benefit from selecting the more expensive composite material (by performing a complete life cycle cost analysis (LCCA) for the two ferries)

•To document that by calculating the accumulated environmental impact of the vessel in its entire service life – including disposal/decommissioning of the vessels, there will be a similar reduction compared to the traditional steel vessel (by performing a complete life cycle analysis (LCA) for the two ferries)

•To perform a required and relatively new approval procedure for vessels built from other materials than steel and obtain a formal approval from the maritime authorities (by performing a full-scale fire risk analysis based on approval of the carbon fibre composite ferry)

•To inspire ship owners, ship yards and designers to consider this alternative material when fuel consumption and environmental impact have high priority (by publishing all project documentation and findings as widely as possible).

Partners
• Danish Yachts
• Coriolis AB
• Niels Hjörnet Yacht Design
• Kockums
• Aalborg Universitet
• Odder Kommune
• SP Technical Research Institute of Sweden:
• 2.-0 LCA Consulting
• Søfartsstyrelsen DK
• Transportstyrelsen SE

Sponsored by
• Den Danske Maritime Fond

• MARKIS
• SP Technical Research Institute of Sweden
• Västra Götalandregionen

For more info, please visit http://www.eco-island.se/

FLOT (Förprojekt Lätta Offshore plattformar)
FLOT is a feasibility study run by SP and sponsored by Västra Götalandsregionen.

The main objective of the project is to develop a basis for, one or more, larger future projects whose results will be directly applicable for building lightweight offshore structures in composite materials. Those projects will be integrated as a part of a work package in the OffshoreVäst programme.

FLOT is also including an analysis of the market potential for composites in offshore

The feasibility study includes the following investigative steps:

• Perform literature review on previous work
• Identify the potential for new or modified lightweight structures in offshore operations by interviewing stakeholders within the platform business
• Map and analyse the regulations for offshore platforms.
• Identify methods to address regulatory discrepancies
• Map the Swedish companies that are active in the offshore business per today
• Map and analyse the Swedish Composite business and  find key success factors for the offshore business
• Formulate a basis for some (3-5) typical applications where lightweight designs could be feasible.

The project is running parallel to an ongoing Norwegian project on composites and offshore structures under water, called TRINN1.

LÄSS
The project LASS, was a VINNOVA and industry sponsored Swedish research project, coordinated by SP Technical Research Institute of Sweden, dep for Fire Technology, that were run between 2004 and 2008. The project aim was to re-design five existing vessels and one offshore living quarter using new lightweight composite and aluminium materials.

The 31st of October, 2007, 150 people from 10 different nations gathered in Borås to listen to a one day conference where project results were presented. More than 15 000 people have visited the former project website www.lass.nu but all project reports have now been collected here at the E-Lass website:

LÄSS Reports and papers

Lättviktsfartyg och vinterförhållanden
Lättviktsfartyg och vinterförhållanden

I samband med marknadsföring av såväl Wind Farm Service Vessels som mindre passagerarfartyg, med skrov i såväl FRP-material som aluminium, så hamnar diskussionen förr eller senare i frågeställningen om dessa fartygs lämplighet för operation i vinterklimat.

Frågan har på senare år aktualiserats beroende på dels att utbyggnaden av havsbaserad vindkraft planeras längre norrut och i delar av Östersjön mer utsatta än befintliga installationer och dels det ökade intresset för miljövänlig sjöburen kollektivtrafik i storstäderna. Grunderna till denna frågeställning pekar mot flera olika orsaker:

• Avsaknad av relevanta regelverk och bristande materialkännedom, vilket skapar en osäkerhet hos beställaren.

• Lättviktsfartygens låga deplacement och därtill kopplade grunda djupgående. Det grunda djupgåendet medför bland annat att sjövattenintag och drivlina kommer närmare vattenlinjen och att de förstnämnda riskeras att sättas igen av issörja medan de senare utsätts för slitage från isen.

• Det lägre deplacementet medför även ett annorlunda operationsbeteende under operation jämfört med ett traditionellt fartyg.

• Avsaknaden av saklig informationsspridning gällande redarnas erfarenheter, vilket givit upphov till spridning av rykten och skrönor.

I dagsläget finns en hel del erfarenhet av trafik med lättviktsfartyg. Erfarenheterna finns dock inte samlade utan är utspridd bland redare, klassällskap, flaggstat, varv, och enskilda konstruktörer.
Projektets mål är att samla in och sammanställa såväl tekniska som operativa erfarenheter från existerande lättviktsfartyg som opererar under vinter/isförhållanden. De samlade erfarenheterna kan sedan användas dels till att indikera de begränsande orsakerna till att lättviktsfartyg anses vara olämpliga att användas i vintertrafik men även ligga till grund för djupare studier, analyser och utveckling inom områden såsom skrovformer, nötningsbeständighet, avisning, operativt beteende, och utformning av angöringsplatser.

Informationsinhämtning kommer att göras genom i första hand telefonintervjuer under perioden halva augusti och september 2015, varefter materialet kommer att sammanställas. Resultatet kommer att presenteras i en rapport samt vid ett seminarium på temat ”Operation av lättviktsfartyg under vinterförhållanden” under hösten 2015.

Projektet leds av C Marine AB och finansieras av S-LÄSS och OffshoreVäst samt insatser från medverkande företag.

Information in English

C Marine AB

OffshoreVäst

Contact information

Mail to Johan Edvardsson

OptimALferries

OptimALferries

OptimALferries och Energieffektiva kompositfärjor – två projekt kring miljöeffektiva passagerarfärjor i stads- och skärgårdstrafik.

Vi har en gemensam utmaning – att utveckla ett mer resurseffektivt samhälle.
Är du en del av lösningen?

Se vår film
Under de senaste åren har flera projekt genomförts med fokus på små passagerarfartyg och möjligheterna att minska utsläpp genom att göra dem lättare. Att antingen minska förbrukningen av diesel eller att helt gå över till elektrisk framdrift eller andra utsläppsminimerande lösningar. Projekten har i flera fall varit samarbeten mellan norska, svenska och danska företag och organisationer. Det s.k. Eco-ö-projektet, en konceptstudie av en färja i kolfiberkomposit har fått stor uppmärksamhet inte minst i Danmark. Den studien ledde så småningom till offert för en kommersiell färja i Danmark.

ECO-Island Ferry

The purpose of the “ECO-Island Ferry” project is to demonstrate the opportunities for fuel cost savings and reduction of environmental impact, if the vessel is built in modern light weight materials instead of traditional steel. In this project a ferry concept has been developed and described. We have defined our ECO-Island Ferry as a ferry built of light weight carbon fibre materials, where the weight saving on the hull is used solely for reducing fuel consumption and thereby lowering the environmental impact (CO2 footprint). The Eco-Island Ferry project will be completed and terminated in March, 2013. As a result and spin-off from the Eco-Island-Ferry project, a commercial project for an eco-friendly ferry is now materialized in Denmark. The ferry operating across Limfjorden is a joint venture between Mors & Thy municipalities. Preliminary design and energy optimization is completed. Commercial negotiations between Yard and Customer are initiated. The ferry will carry 12 cars and 98 passengers and will be regulated by Søfartsstyrelen’s (DMA) rules for near-coastal operation. Background It is a well-known fact that there is a fixed physical relationship between the weight of at transported load (ship+cargo) and the required power (horsepower). It is therefore obvious that the lighter the vessel itself is, the more pay load can be transported with the same power. Other sectors of the transportation industry has for years been very well aware of this fact, and are constantly striving for designing lighter transportation vehicles. Increasing fuel costs and environmental issues have become a key factor in modern shipbuilding, and it is therefore relevant to search for new methods to improve the efficiency – also for vessels. Upcoming requirements from IMO will classify vessels above 400 GT according to their energy efficiency design index – EEDI. The new IMO regulations will be implemented from 2013 to 2025. These requirements will most likely – in a modified form – include smaller vessels too. A lighter vessel will have relatively higher energy efficiency than a heavier one. Traditionally, vessels have been built in steel – or to a certain degree – aluminum. The choice of composite materials as the main structural material for a vessel hull is desired to reach higher speed with the same power, or to carry a larger payload with the same displacement. A ship hull built of carbon-reinforced sandwich weighs only approximately 1/3 of a steel hull with the same displacement. Even if the equipment and installations in the ship are the same as in a similar steel vessel, the lighter vessel will require substantially less engine power to transport the same payload with the same speed. But a carbon fibre ferry has a higher initial cost than a similar steel ferry, and the legislation in general requires or expects vessels to be built from steel or other non- combustible material. Our Project targets are: •To demonstrate that by reducing the weight of smaller vessel hull structure, significantly reduction in fuel consumption and environmental impact can be achieved (by comparing an existing steel ferry with an alternative design of a ferry in carbon fibre sandwich composite with the same payload and speed) •To document that by calculating the accumulated cost of the vessel in its entire service life, there will be an economical benefit from selecting the more expensive composite material (by performing a complete life cycle cost analysis (LCCA) for the two ferries) •To document that by calculating the accumulated environmental impact of the vessel in its entire service life – including disposal/decommissioning of the vessels, there will be a similar reduction compared to the traditional steel vessel (by performing a complete life cycle analysis (LCA) for the two ferries) •To perform a required and relatively new approval procedure for vessels built from other materials than steel and obtain a formal approval from the maritime authorities (by performing a full-scale fire risk analysis based on approval of the carbon fibre composite ferry) •To inspire ship owners, ship yards and designers to consider this alternative material when fuel consumption and environmental impact have high priority (by publishing all project documentation and findings as widely as possible). For more info, please visit www.eco-island.se Partners • Danish Yachts • Coriolis AB • Niels Hjörnet Yacht Design • Kockums • Aalborg Universitet • Odder Kommune • SP Technical Research Institute of Sweden: • 2.-0 LCA Consulting • Søfartsstyrelsen DK • Transportstyrelsen SE Sponsored by • Den Danske Maritime Fond • MARKIS • SP Technical Research Institute of Sweden • Västra Götalandregionen

Eco-ö-projektet ledde till seminarieserier i både Danmark och Sverige, genomförda under 2013. Syftet med dessa var att visa på de tekniska lösningar som redan finns för att kunna bygga miljöeffektiva små färjor.

I Eco-ö-projektet konstaterade vi att det finns behov att se bredare på kostnadseffektiva lösningar och t.ex. arbeta med andra material. Att tillverka fartygen i kolfiberkomposit gör dem mycket lätta men kanske inte alltid optimala för sitt syfte. Även aluminium och nya stållegeringar ger möjligheter till lättare fartyg. Sammantaget finns idag olika möjligheter att utveckla lättare fartyg beroende på användningsområden, miljö, designbehov mm.
Inom projektet OptimALferries, har fokus satts på tillverkning i aluminium. Projektet är ett samarbete mellan svenska, norska och danska företag och organisationer. Projektet har medfinansierats av Innovation Express inom EU BSR Stars, Västra Götalandsregionen och SP Sveriges Tekniska forskningsinstitut. Syftet har varit att gemensamt ta fram ett övergripande GA för referensfärjor som senare kan utvecklas till demofärjor med hög grad av innovativt tänkande.
Utgångspunkten har varit en passagerarfärja från Styrsöbolaget.
Under projektets gång har dessutom inkluderats en bilfärja från Vägverket som referensfärja. Där har möjligt utgångsmaterialet varit kolfiberkomposit resp. höghållfast stål. Lösningsförslag har diskuterats i samband med workshops.
Optimerad tillverkningsprocess med hjälp av modularisering och modulbyggande har varit del i förutsättningen för konstruktionerna. Tillverkningsfrågor har diskuterats tillsammans med de norska partnerorganisationerna.

Inom projektet Energieffektiva kompsositfärjor har fokus varit att identifiera och verifiera tekniska utmaningar, det vi kallat svarta hål men också att göra en genomgång av marknaden med avseende på befintliga fartyg i Sverige, Danmark och Norge samt att identifiera nyckelleverantörer. Projektet har medfinansierats av Interreg IVA, Västra Götalandsregionen och SP Sveriges Tekniska Forskningsinstitut.

Vi kan sammanfattningsvis konstatera

  • att det finns tekniska möjligheter till mer lättviktsoptimerade små passagerarfärjor
  • att det finns goda möjligheter att installera elektrisk framdrift men att lösningarna är avhängiga de enskilda färjerutternas specifika förhållande
  • att modularisering och modulbyggande borde kunna ge kostnadseffektiva lösningar för både investering och drift
  • att investeringskostnaden för miljöeffektivare lösningar är högre än traditionella lösningar men
  • att driftskostnaderna har förutsättningar att bli lägre
  • att optimala lösningar också kräver kringinvesteringar i form av t.ex. laddstationer, angöringsplatser och samordningslösningar med övriga transportslag
  • att det finns behov att se över regelverk
  • att upphandlingsförfarande för offentligt drivna färjeleder behöver ses över för att driva på innovativa tekniska lösningar
  • att det finns behov av fler demonstrationsexempel för att testa teknik- och logistiklösningar

För mer information: kontakta Erik Bunis, erik.bunis@sp.se eller Mats Hjortberg, mats@coriolis.se 

Du kan också besöka: www.eco-island.se

Stardust

The maritime area has a long tradition and is essentially based on international collaborations and business. There is a large number of EU projects with a focus on new fuels, energy efficiency, intermodal transport, port development, etc..

In the Baltic Sea Region (Baltic, BSR) leads Vinnova greater collaboration project with five pilot projects including one about the future of transport, called Marchain. SP is a partner in the project and has brought up the lightweight structures at sea and their area of responsibility.

However, the project seeks to involve others in activities and projects, industry, academia and the public sector. S-Lass  is the natural platform for this work. Take the opportunity to participate in collaboration and up your suggestions for activities and projects on the agenda.

TankLightModule

The project aims at the development of a fully equipped lightweight superstructure for a chemical or petrol tanker. This will include a lightweight FRP (fiber reinforced polymer) composite structure design, integrated lightweight interior design (cabins etc) and all necessary equipment for the bridge and controlling units of the vessel. The project focus on underdeveloped technical issues. This includes a full analysis to be made for acceptance of the construction by classification and flag authorities, which include a full FSE (fire safety engineering) design in accordance to SOLAS Regulation 17. Life cycle cost and environmental analysis will also be made.

Project participants are:
• Sirius
• Coriolis
• Premec
• Kockums
• HF Interior
• SMTF (Svenskt Marintekniskt Forum)
• SAPA
• Swerea-Sicomp
• SP Technical research Institute of Sweden
• Chalmers
• The Swedish Transport Agency
• Gotaverken Cityvarvet 
• Callenberg
• FKAB
• DNV

Share This